Investigation of drying kinetics and drying conditions on biochemical, sensory, and microstructural parameters of “Sefri” pomegranate arils (Punica granatum L. a Moroccan variety).

  • S. El Broudi
  • N. Zehhar
  • N. Abdenouri
  • A. Boussaid
  • A. Hafidi
  • H. Bouamama Cadi Ayyad University , Marrakech
  • F. Benkhalti
Keywords: Pomegranate arils “Sefri variety”, drying methods, drying kinetics, biochemical parameters, sensory analysis.


The study evaluated the application of four drying temperatures inside a newly developed hybrid indirect solar dryer in forced convection (at 40, 50, 60, and 70°C) compared to a direct solar dryer (Greenhouse) for the processing of the Moroccan Sefri pomegranate arils. The thermodynamical analysis allows characterizing the physical properties of the arils using some parameters such as optimal water activity, net isosteric heat of sorption, and effective moisture diffusivity. The biochemical analysis studied included total proteins, sugars, vitamin C, and total anthocyanins, hygrometric properties, microstructure modification, and sensory evaluation. Generally, drying led to a reduction in all parameters. However, lower drying temperature processes (indirect convective solar drying at 40°C and 50°C) give the best results for pomegranate arils. Greenhouse dried samples had almost the lower quality in all parameters. The color is more preserved at indirect convective solar drying at 40°C. However, indirect convective solar drying at 50°C was most appreciated by consumers with higher scores on the sensory evaluation test. As the first study of the thermodynamic and biochemical investigation of dried pomegranate arils in Morocco, this work intended to be the first step in developing controlled new high-quality products for the Moroccan market.


Adiba, A., Hssaini, L., Haddioui, A., Hamdani, A., Charafi, J., El Iraqui, S., and Razouk, R. (2021). Pomegranate plasticity to water stress: attempt to understand interactions between cultivar, year, and stress level. Heliyon, 7(6), 1–9.

Adiba, A., Razouk, R., Charafi, J., Haddioui, A., and Hamdani, A. (2021). Assessment of water stress tolerance in eleven pomegranate cultivars based on agronomic traits. Agricultural Water Management, 243, 1–7.

Barbosa-Cánovas, V., G., J. Fontana Jr., A., Schmidt, S. J., and Labuza, P., T. (2007). Water Activity in Foods Fundamentals and Applications.

Beaudry, C., Raghavan, G. S. V., Ratti, C., and Rennie, T. J. (2004). Effect of four drying methods on the quality of osmotically dehydrated cranberries. Drying Technology, 22(3), 521–539.

Benchagra, L., Berrougui, H., Islam, M. O., Ramchoun, M., Boulbaroud, S., Hajjaji, A., Fulop, T., Ferritti, G., & Khalil, A. (2021). Antioxidant effect of Moroccan pomegranate (Punica granatum L. Sefri Variety) extracts rich in punicalagin against the oxidative stress process. Foods, 10, 2219. 10.3390/foods10092219.

Beristain, C. I., Garcia, H. S., and Azuara, E. (1996). Enthalpy-entropy compensation in food vapor adsorption. Journal of Food Engineering, 30, 405–415.

Bhardwaj, A. K., Kumar, R., and Chauhan, R. (2019). Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in the Western Himalayan region. Solar Energy, 177, 395–407.

Bonazzi, C., and Dumoulin, E. (2014). Quality changes in food materials as influenced by drying processes. In Modern Drying Technology, (pp. 1–20).

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

Calín-Sánchez, Á., Lech, K., Szumny, A., Figiel, A., and Carbonell-Barrachina, Á. A. (2012). Volatile composition of sweet basil essential oil (Ocimum basilicum L.) as affected by drying method. Food Research International, 48(1), 217–225.

Chen, X., Li, X., Mao, X., Huang, H., Miao, J., and Gao, W. (2016). Study on the effects of different drying methods on physicochemical properties, structure, and in vitro digestibility of Fritillaria thunbergii Miq. (Zhebeimu) flours. Food and Bioproducts Processing, 98, 266–274.

Chowdhury, M. S., Ahmed, A., Hoque, M. R., Rahman, A., Saied, S. U. H., and Ealahe, H. M. H. K. (2016). Determination of amount of vitamin C (Ascorbic Acid) from the supplied drug by using iodometric titration. Department of Pharmacy International Islamic University Chittagong.

Crank, J. (1975). The mathematics of diffusion (Second Edi). Clarendon Press, Oxford.

Dak, M., Sagar, V. R., and Jha, S. K. (2014). Shelf life and kinetics of quality changes in dried pomegranate arils in flexible packaging. Food Packaging and Shelf Life, 2–7.

Dipersio, P. A., Kendall, P. A., and Sofos, J. N. (2006). Sensory evaluation of home-dried fruit prepared using treatments that enhance the destruction of pathogenic bacteria. Journal of Food Quality, 29(1), 47–64.

Doymaz, İ., and Altıner, P. (2012). Effect of pretreatment solution on drying and color characteristics of seedless grapes. Food Sci. Biotechnol., 21(1), 43–49.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

El Ferouali, H., Doubabi, S., El Kilali, T., and Abdenouri, N. (2016). CFD study of a designed forced convection solar dryer. application to the drying of Punica granatum legrelliae’s flowers. Gifu, Japan: The 20th International Drying Symposium (IDS 2016).

García-Valladares, O., Cesar-Munguia, A. L., López-Vidaña, E. C., Castillo-Téllez, B., Ortiz-Sánchez, C. A., Lizama-Tzec, F. I., & Domínguez-Niño, A. (2022). Effect by using a modified solar dryer on physicochemical properties of carambola fruit (Averrhoa carambola L.). Revista Mexicana de Ingeniería Química, 21(1), 1–14.

Ghasemnezhad, M., Zareh, S., Shiri, M. A., and Javdani, Z. (2015). The arils characterization of five different pomegranates (Punica granatum) genotypes stored after minimal processing technology. Journal of Food Science and Technology, 52(4), 2023–2032.

Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. J.Res. Nat. Bureau of Standards - Section A. Physics and Chemistry, 81(1), 89–96.

Guiné, R. P. F., Almeida, I. C., Correia, A. C., and Gonçalves, F. J. (2015). Evaluation of the physical, chemical, and sensory properties of raisins produced from grapes of the cultivar Crimson. Journal of Food Measurement and Characterization, 9(3), 337–346.

Hamza, L., Mounir, K., Younes, B., Zakaria, T., Haytem, M., Hind, M., Abdelkader, L., and Ali, I. (2020). Physicochemical study of the conservation of Moroccan anchovies by convective solar drying. Renewable Energy, 152, 44–54.

Hidar, N., Ouhammou, M., Mghazli, S., Idlimam, A., Hajjaj, A., Bouchdoug, M., Jaouad, A., and Mahrouz, M. (2020). The impact of solar convective drying on kinetics, bioactive compounds, and microstructure of stevia leaves. Renewable Energy, 161, 1176–1183.

Hmid, I., Elothmani, D., Hanine, H., Oukabli, A., and Mehinagic, E. (2017). Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco. Arabian Journal of Chemistry, 10, S2675–S2684.

Hmid, I., Hanine, H., Elothmani, D., and Oukabli, A. (2018). The Physico-chemical characteristics of Morrocan pomegranate and evaluation of the antioxidant activity for their juices I. Journal of the Saudi Society of Agricultural Sciences, 17(3), 302–309.

Horuz, E., and Maskan, M. (2013). Hot air and microwave drying of pomegranate (Punica granatum L.) arils. J. Food Sci Technol, 52(1), 285–293.

Hssaini, L., Ouaabou, R., Charafi, J., Idlimam, A., Lamharrar, A., Razouk, R., and Hanine, H. (2020). Hygroscopic proprieties of fig (Ficus carica L.): Mathematical modeling of moisture sorption isotherms and isosteric heat kinetics. South African Journal of Botany.

Ismail, F. A., Abdelatif, S. H., El-Mohsen, N. R. A., and Zaki, S. A. (2014). The physicochemical properties of pomegranate juice (Punica granatum L.) extracted from two Egyptian varieties. World Journal of Dairy and Food Sciences, 9(1), 29–35.

Kar, C. El, Mtimet, N., Ferchichi, A., and Bouajila, J. (2013). Relationships between fruit acceptability and health-case of seven pomegranates (Punica granatum L.) juices. Food and Nutrition Sciences, 04(08), 119–130.

Koukouch, A., Idlimam, A., Asbik, M., Sarh, B., Izrar, B., Bah, A., and Ansari, O. (2015). Thermophysical characterization and mathematical modeling of convective solar drying of raw olive pomace. Energy Conversion and Management, 99, 221–230.

Krešić, G., Lelas, V., and Šimundić, B. (2004). Effects of processing on nutritional composition and quality evaluation of candied celeriac. Sadhana - Academy Proceedings in Engineering Sciences, 29(1), 1–12.

Le Meste, M., Roudaut, G., Chiotelli, E., Simatos, D., and Colas, B. (2001). Propriétés fonctionnelles de l’eau dans les aliments: Dossier eau. Industries Alimentaires et Agricoles, 118(5), 21–28.

Morales-Delgado, D. Y., Téllez-Medina, D. I., Rivero-Ramírez, N. L., Arellano-Cárdenas, S., López-Cortez, S., Hernández-Sánchez, H., Gutiérrez-López, G., and Cornejo-Mazón, M. (2014). Effect of convective drying on total anthocyanin content, antioxidant activity and cell morphometric parameters of strawberry parenchymal tissue (fragaria x ananassa Dutch). Revista Mexicana de Ingeniera Quimica, 13(1), 179–187.

Mundada, M., and Bahadur Singh, H. (2012). Studies on moisture sorption isotherms for osmotically pretreated and air-dried pomegranate arils. Journal of Food Processing and Preservation, 36(4), 329–38.

Loukhmas, S., Kerak, E., Outaki, M., Ettalibi, F., Kharbouch, H. A., and Harrak, H. (2021). Physicochemical criteria, bioactive compounds, antioxidant activity, and sensory attributes of ten Moroccan pomegranate cultivars. Eur. J. Hortic. Sci., 86(4), 339–353.

Loukhmas, S., Kerak, E., Outaki, M., and Belaqziz, M. (2020). Assessment of minerals, bioactive compounds, and antioxidant activity of ten Moroccan pomegranate cultivars. Journal of Food Quality, 2020, 10.

Meda, L., and Ratti, C. (2005). Rehydration of freeze-dried strawberries at varying temperatures. Journal of Food Process Engineering, 28, 233–246.

Montoya-Ballesteros, L. C., Gonzales-Leon, A., Martinez-Nunez, Y. J., Robles-Burgueno, M. R., Garcia-Alvarado, M. A., Rodriguez-Jimenes, G. C. (2017). Impact of Open Sun Drying and Hot Air Drying on Capcaisin, Capsanthin, and Ascorbic Acid Content in Chiltepin (Capsicum Annum L. Var. Glabriusculum). Revista Mexicana de Ingeniería Química 16(3), 813–25.

Moussaoui, H., Bahammou, Y., Idlimam, A., Lamharrar, A., and Abdenouri, N. (2019). Investigation of hygroscopic equilibrium and modeling sorption isotherms of the argan products: A comparative study of leaves, pulps, and fruits. Food and Bioproducts Processing, 114, 12–22.

Mujumdar, A. S. (2006). Handbook of Industrial Drying (3rd ed.). Ed. Marcel Dekker Inc.

Ouaabou, R., Ennahli, S., Lorenzo, C. Di, Hanine, H., Bajoub, A., Lahlali, R., Idlimam, A., Oubahou, A. A., and Mesnaoui, M. (2021). Hygroscopic properties of sweet cherry powder : thermodynamic properties and microstructural changes. Journal of Food Quality.

Pascual-Pineda, L. A., Hernández-Marañon, A., Castillo-Morales, M., Uzárraga-Salazar, R., Rascón-Díaz, M. P., and Flores-Andrade, E. (2020). Effect of water activity on the stability of freeze- dried oyster mushroom (Pleurotus ostreatus) powder. Drying Technology, 1–14.

Peleg, M. (1992). Assessment of a semi-empirical four-parameter general model for sigmoid moisture sorption isotherms. J. Food Process Eng., 16(1), 21–37.

Piga, A., Pinna, I., Özer, K. B., Agabbio, M., and Aksoy, U. (2004). Hot air dehydration of figs (Ficus carica L.): drying kinetics and quality loss. International Journal of Food Science and Technology, 39(7), 793–799.

Popovski, D., and Mitrevski, V. (2004). Some new four-parameter models for moisture sorption isotherms. Electronic Journal of Environmental, Agricultural and Food Chemistry, 3(3), 698–701.

Prasantha, B. D. R. (2018). Prediction of moisture adsorption characteristics of dehydrated fruits using the GAB isotherm model. Ann Agric Crop Sci, 3(1), 1–4.

Ruvini, L., Dissanayaka, W., Chathuni, J., Rizliya, V., Swarna, W., and Barana, C. J. (2017). Effect of different drying methods on antioxidant activity of star fruits (Averrhoa Carambola L.). Journal of Nutrition and Diet Supplements, 1(1), 1–6.

Santacruz-Vázquez, V., Santacruz-Vázquez, C., Welti-Chanes, J., Farrera-Rebollo, R. R., Alamilla-Beltrán, L., Chanona-Pérez, J., Gutiérrez-López, G. F. (2008). Effects of air-drying on the shrinkage, surface temperatures and structural features of apples slabs by means of fractal analysis. Revista Mexicana de Ingeniería Química. 7(1), 55–63.

Senadeera, W., Adiletta, G., Önal, B., Matteo, M., Di Russo, P. (2020). Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods, 9(101), 1–12.

Sharma, A., and Thakur, N. S. (2016). Influence of active packaging on quality attributes of dried wild pomegranate (Punica granatum L.) arils during storage. Journal of Applied and Natural Science, 8(1), 398–404.

Sidhu, S. J. (2016). Thesis: Optimization of greenhouse drying process for white button mushroom (Agaricus bisporus). Punjab Agricultural University, India.

Slatnar, A., Klancar, U., Stampar, F., and Veberic, R. (2011). Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. Journal of Agricultural and Food Chemistry, 59(21), 11696–11702.

Stover, E., and Mercure, E. W. (2007). The pomegranate: A new look at the fruit of paradise. HortScience, 42(5), 1088–1092.

Tagnamas, Z., Bahammou, Y., Kouhila, M., and Hilali, S. (2020). Conservation of Moroccan truffle (Terfezia boudieri) using solar drying method. Renewable Energy, 146, 16–24.

Thompson, T. L., Peart, R. M., and Foster, G. H. (1986). Mathematical simulation of corn drying, a new model. Transactions of the ASAE, 11(4), 582–586.

Tian, Y., Zhao, Y., Huang, J., Zeng, H., and Zheng, B. (2016). Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chemistry, 197, 714–722.

Turkiewicz, I. P., Wojdyło, A., Lech, K., Tkacz, K., and Nowicka, P. (2019). Influence of different drying methods on the quality of Japanese quince fruit. LWT - Food Science and TechnologyFood, 114, 108416.

Turkmen, F., Karasu, S., and Karadag, A. (2020). Effects of different drying methods and temperature on the drying behavior and quality attributes of cherry laurel fruit. Processes, 8(7).

Van den Berg, C., and Bruin, S. (1981). Water Activity and its Estimation in Food Systems: Theoretical Aspects. In Water Activity: Influences on Food Quality (pp. 1–61). Elsevier.

Wang, J., Yang, X. H., Mujumdar, A. S., Wang, D., Zhao, J. H., Fang, X. M., Zhang, Q., Xie, L., Gao, Z. J., and Xiao, H. W. (2017). Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure, and drying kinetics of red bell pepper (Capsicum annuum L.). LWT - Food Science and Technology, 77, 337–347.

Wojdyło, A., Lech, K., Nowicka, P., Hernandez, F., Figiel, A., and Carbonell-Barrachina, A. A. (2019). Influence of different drying techniques on phenolic compounds, antioxidant capacity, and color of Ziziphus jujube mill. Fruits. Molecules, 24(13).

Yalin, M. D., Glazer, I., Bar-ILan, I., Kerem, Z., Holland, D., and Amir, R. (2010). Color, sugars, and organic acids composition in aril juices and peel homogenates prepared from different pomegranate accessions. J. Agric. Food Chem, 58, 4342–4352.

Zhao, P., Zhong, L., Zhao, Y., and Luo, Z. (2015). Comparative studies on the effect of mineral matter on physicochemical properties, inherent moisture, and drying kinetics of Chinese lignite. and Management. Energy Conversion, 93, 197–204.

How to Cite
El Broudi, S., Zehhar, N., Abdenouri, N., Boussaid, A., Hafidi, A., Bouamama, H., & Benkhalti, F. (2022). Investigation of drying kinetics and drying conditions on biochemical, sensory, and microstructural parameters of “Sefri” pomegranate arils (Punica granatum L. a Moroccan variety). Revista Mexicana De Ingeniería Química, 21(3), Alim2813.
Food Engineering