Large amplitude oscillatory shear (LAOS) rheology of candelilla wax/canola oil oleogels

  • Y. Carrera
  • M. Gonzalez
  • M. E. Rodriguez-Huezo
Keywords: Candelilla wax; Oleogels; nonlinear viscoelasticity; LAOS; Fourier analysis; High harmonics.


Candelilla wax (CW) was added in 5, 6 and 7% w/w to canola oil (CO), heating the mixtures to 90 oC, and cooling down to room temperature, in order to obtain CW/CO oleogels. The nonlinear viscoelastic characteristics of the oleogels was conducted by means of large amplitude oscillatory shear (LAOS) methods. To this end, Fourier analysis of the stress-time response was carried out to extract information on high-harmonic oscillatory moduli. The results showed that nonlinearities were expressed for moderate strain deformations, of the order of 1-15%. In particular, nonlinearities quantified in terms of the harmonic contributions were stronger for the elastic response (about 85-125%) than for the viscous response (less than 40%). In contrast, the mechanical response was essentially harmonic for small amplitude values, indicating the absence of nonlinearities and hence the dominance of linear viscoelastic response. Interestingly, the viscoelastic response was also linear for large strain deformation (>100%). The results reported in the present study demonstrated the viability of LAOS method for obtaining invaluable insights regarding the nonlinear mechanical response of edible oleogels made with natural waxes.


Acevedo, N. C., and Marangoni, A. G. (2010). Characterization of the nanoscale in triacylglycerol crystal networks. Crystal Growth & Design 10, 3327-3333.

Aguilar-Zárate, M., Macias-Rodriguez, B. A., Toro-Vazquez, J. F., and Marangoni, A. G. (2019). Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydrate Polymers 205, 98-105.

Alvarez-Mitre, F. M., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charo-Alonso, M. A. and Toro-Vazquez, J. F. (2012). Shearing as a variable to engineer the rheology of candelilla wax organogels. Food Research International 49, 580-587.

Alvarez-Ramirez, J., Carrera-Tarela, Y., Carrillo-Navas, H., Vernon-Carter, E. J., and Garcia-Diaz, S. (2019a). Effect of leavening time on LAOS properties of yeasted wheat dough. Food Hydrocolloids 90, 421-432.

Alvarez-Ramirez, J., Escarela-Perez, R., Vernon-Carter, E. J., and Carrillo-Navas, H. (2019b). Large amplitude oscillatory shear (LAOS) rheology of nixtamalized corn masa. Journal of Cereal Science 88, 31-37.

Co, E. D., and Marangoni, A. G. (2012). Organogels: An alternative edible oil‐structuring method. Journal of the American Oil Chemists' Society 89, 749-780.

Doan, C. D., Van de Walle, D., Dewettinck, K., and Patel, A. R. (2015). Evaluating the oil-gelling properties of natural waxes in rice bran oil: Rheological, thermal, and microstructural study. Journal of the American Oil Chemists' Society 92, 801-811.

Ewoldt, R. H., Hosoi, A.E., and McKinley, G. H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology 52, 1427-1458.

Ewoldt, R. H., Winter, P., Maxey, J., and McKinley, G. H. (2010). Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheologica Acta 49, 191-212.

Faber, T. J., Van Breemen, L. C. A., and McKinley, G. H. (2017). From firm to fluid–Structure-texture relations of filled gels probed under Large Amplitude Oscillatory Shear. Journal of Food Engineering 210, 1-18.

García-Andrade, M., González-Laredo, R. F., Rocha-Guzmán, N. E., Rosas-Flores, W., Moreno-Jiménez, M. R., Peña-Ramos, E. A., and Gallegos-Infante, J. A. (2020). Influence of ethyl cellulose in a multicomponent mixture (sorbitan monopalmitate-vegetable oils) on physicochemical properties of organogels. Revista Mexicana de Ingeniería Química 19, 953-968.

Ghazani, S. M., and Marangoni, A. G. (2013). Minor components in canola oil and effects of refining on these constituents: A review. Journal of the American Oil Chemists' Society 90, 923-932.

Hwang, H. S., Kim, S., Singh, M., Winkler‐Moser, J. K., and Liu, S. X. (2012). Organogel formation of soybean oil with waxes. Journal of the American Oil Chemists' Society 89, 639-647.

Hwang, H. S., Singh, M., Bakota, E. L., Winkler‐Moser, J. K., Kim, S., and Liu, S. X. (2013). Margarine from organogels of plant wax and soybean oil. Journal of the American Oil Chemists' Society 90, 1705-1712.

Hyun, K., Kim, S. H., Ahn, K. H., and Lee, S. J. (2002). Large amplitude oscillatory shear as a way to classify the complex fluids. Journal of Non-Newtonian Fluid Mechanics 107, 51-65.

Hyun, K., Wilhelm, M., Klein, C. O., Cho, K. S., Nam, J. G., Ahn, K. H., Lee, S. J., Ewoldt, R.H., and McKinley, G. H. (2011). A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science 36, 1697-1753.

Joyner, H. S. (2021). Nonlinear (large-amplitude oscillatory shear) rheological properties and their impact on food processing and quality. Annual Review of Food Science and Technology 12, 591-609.

Li, L. (2002). Thermal gelation of methylcellulose in water: scaling and thermoreversibility. Macromolecules 35, 5990-5998.

Liu, Y., Ma, S., Xia, H., Guo, S., and Zeng, C. (2022). Edible oleogels stabilized solely by stigmasterol: effect of oil type and gelator concentration. Journal of the Science of Food and Agriculture In press.

Ma, Y., Su, D., Wang, Y., Li, D., and Wang, L. (2020). Effects of concentration and NaCl on rheological behaviors of konjac glucomannan solution under large amplitude oscillatory shear (LAOS). LWT 128, 109466.

Macias‐Rodriguez, B. A., and Marangoni, A. G. (2017). Understanding the functionality of lipid‐based materials under large‐amplitude nonlinear deformations. Lipid Technology 29, 23-27.

Macias-Rodriguez, B. A., and Marangoni, A. A. (2018). Linear and nonlinear rheological behavior of fat crystal networks. Critical Reviews in Food Science and Nutrition 58, 2398-2415.

Mattice, K. D., and Marangoni, A. G. (2018). Oleogels in Food. In: Reference Module in Food Science.

Medina-Torres, N., Cuevas-Bernardino, J. C., Ayora-Talavera, T., Patrón-Vázquez, J. A., Rodríguez-Buenfil, I., and Pacheco, N. (2021). Changes in the physicochemical, rheological, biological, and sensorial properties of habanero chili pastes affected by ripening stage, natural preservative and thermal processing. Revista Mexicana de Ingeniería Química 20, 195-212.

Mert, B., and Demirkesen, I. (2016). Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chemistry 199, 809-816.

Morales‐Rueda, J. A., Dibildox‐Alvarado, E., Charó‐Alonso, M. A., and Toro‐Vazquez, J. F. (2009). Rheological properties of candelilla wax and dotriacontane organogels measured with a true‐gap system. Journal of the American Oil Chemists' Society 86, 765-772.

Öğütcü, M., and Yılmaz, E. (2015). Characterization of hazelnut oil oleogels prepared with sunflower and carnauba waxes. International Journal of Food Properties 18, 1741-1755.

Patel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A., and Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science 411, 114-121.

Pérez-Martínez, J. D., Sánchez-Becerril, M., Marangoni, A. G., Toro-Vazquez, J. F., Ornelas-Paz, J. J., and Ibarra-Junquera, V. (2019). Structuration, elastic properties scaling, and mechanical reversibility of candelilla wax oleogels with and without emulsifiers. Food Research International 122, 471-478.

Pușcaș, A., Mureșan, V., Socaciu, C., and Muste, S. (2020). Oleogels in food: A review of current and potential applications. Foods 9, 70.

Rodríguez-Hernández, A. K., Pérez-Martínez, J. D., Gallegos-Infante, J. A., Toro-Vazquez, J. F., and Ornelas-Paz, J. J. (2021). Rheological properties of ethyl cellulose-monoglyceride-candelilla wax oleogel vis-a-vis edible shortenings. Carbohydrate Polymers 252, 117171.

Rogers, M. A., Wright, A. J., and Marangoni, A. G. (2008). Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Soft Matter 4, 1483-1490.

Rogers, M. A., Strober, T., Bot, A., Toro-Vazquez, J. F., Stortz, T., and Marangoni, A. G. (2014). Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science 2, 22-31.

Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., and Janmey, P. A. (2005). Nonlinear elasticity in biological gels. Nature 435(7039), 191-194.

Toro‐Vazquez, J. F., Morales‐Rueda, J. A., Dibildox‐Alvarado, E., Charó‐Alonso, M., Alonzo‐Macias, M., and González‐Chávez, M. M. (2007). Thermal and textural properties of organogels developed by candelilla wax in safflower oil. Journal of the American Oil Chemists' Society 84, 989-1000.

Toro-Vazquez, J. F., Charó-Alonso, M. A., Pérez-Martínez, J. D., and Morales-Rueda, J. A. (2011). Candelilla wax as an organogelator for vegetable oils—an alternative to develop trans-free products for the food industry. In: Marangoni, A. G. Garti, N. (Eds.), Edible Oleogels, Structure and Health Implications. AOCS Press, pp. 119-148.

Trujillo-Ramírez, D., Reyes, I., Lobato-Calleros, C., Vernon-Carter, E. J., and Alvarez-Ramirez, J. (2022). Chia seed oil-candelilla wax oleogels structural features and viscoelasticity are enhanced by annealing. LWT 153, 112433.

Vakakis, A. F., Gendelman, O. (2001). Energy pumping in nonlinear mechanical oscillators: Part II-resonance capture. Journal of Applied Mechanics 68, 42-48.

Wang, Z., Chandrapala, J., Truong, T., and Farahnaky, A. (2022). Oleogels prepared with low molecular weight gelators: Texture, rheology and sensory properties, a review. Critical Reviews in Food Science and Nutrition 1-45.

Wijarnprecha, K., Aryusuk, K., Santiwattana, P., Sonwai, S., and Rousseau, D. (2018). Structure and rheology of oleogels made from rice bran wax and rice bran oil. Food Research International 112, 199-208.

Yazar, G., and Rosell, C. M. (2022). Fat replacers in baked products: their impact on rheological properties and final product quality. Critical Reviews in Food Science and Nutrition 1-24.

Zetzl, A. K., Gravelle, A. J., Kurylowicz, M., Dutcher, J., Barbut, S., and Marangoni, A. G. (2014). Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Structure 2, 27-40.

Zhang, Y., Wang, Y., Zhang, R., Yu, J., Gao, Y., and Mao, L. (2022). Tuning the rheological and tribological properties to simulate oral processing of novel high internal phase oleogel-in-water emulsions. Food Hydrocolloids 131, 107757.

Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., and Goff, H. D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of Food Science 78, C1334-C1339.

How to Cite
Carrera, Y., Gonzalez, M., Rodriguez-Huezo, M. E., & Meraz, M. (2022). Large amplitude oscillatory shear (LAOS) rheology of candelilla wax/canola oil oleogels. Revista Mexicana De Ingeniería Química, 21(2), Bio2816.

Most read articles by the same author(s)