Sugar production by dilute acid hydrolysis of oat bagasse with three different acids: kinetics and thermodynamics

  • J.C. Gómora-Hernández Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Tianguistenco
  • M. del C. Carreño-de-León Tecnológico Nacional de México/Instituto Tecnológico de Toluca
  • F. Cuellar-Robles Tecnológico Nacional de México/Instituto Tecnológico de Toluca
  • N. Flores-Alamo Instituto Tecnologico de Toluca
Keywords: Kinetics, thermodynamics, oat bagasse, reducing sugars, acid hydrolysis

Abstract

Acid hydrolysis is used as a treatment method to hydrolyse the polysaccharides present in biomass to fermentable sugar. In this research the hydrolysis of oat bagasse was studied employing different inorganic acids (HCl, H2SO4 and H3PO4) at low temperatures (90 – 110 °C) in a long-term process. Sulphuric acid showed a high potential to produce reducing sugars reaching the maximum production yields at 110°C, while hydrochloric acid at 110°C was the most catabolic acid promoting sugars transformation into furfural. FTIR and relative transmittance analyses suggested that major impact on lignin polymer was made by phosphoric acid hydrolysis at Combined Severity Factors (CSF) higher than 1.5. Kinetic constants calculated from conventional Saeman model allowed to determine thermodynamic parameters for each inorganic acid. Decomposition of sugars occurred most frequently when the Activation Energies (Ae) were low than calculated for sugar production, being aldehydes, the most stable products obtained during hydrolysis. Thermodynamic parameters show and endothermic and non-spontaneous oat bagasse hydrolysis reaction for different inorganic acids.

Author Biographies

J.C. Gómora-Hernández, Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Tianguistenco

Departamento de Investigación y Desarrollo Tecnológico,

M. del C. Carreño-de-León, Tecnológico Nacional de México/Instituto Tecnológico de Toluca

División de Estudios de Posgrado e Investigación

F. Cuellar-Robles, Tecnológico Nacional de México/Instituto Tecnológico de Toluca

División de Estudios de Posgrado e Investigación

References

Ajala, E. O., Ajala, M. A., Tijani, I. A., Adebisi, A. A., & Suru, I. (2020). Kinetics modelling of acid hydrolysis of cassava (Manihot esculanta Cranz) peel and its hydrolysate chemical characterisation. Journal of King Saud University - Science, 32(4). https://doi.org/10.1016/j.jksus.2020.03.003

Akobi, C., Hafez, H., & Nakhla, G. (2017). Impact of furfural on biological hydrogen production kinetics from synthetic lignocellulosic hydrolysate using mesophilic and thermophilic mixed cultures. International Journal of Hydrogen Energy, 42(17). https://doi.org/10.1016/j.ijhydene.2017.03.173

Arslan, Y., Takaç, S., & Eken-Saraçoĝlu, N. (2012). Kinetic study of hemicellulosic sugar production from hazelnut shells. Chemical Engineering Journal, 185–186. https://doi.org/10.1016/j.cej.2011.04.052

Asencios, Y, J. O., Parreira, L. M., Perpetuo, E. A., Rotta, A. L. (2022). Characterization of seaweeds collected from Baixada Santista litoral, and their potential uses as biosorbents of heavy metal cations. Revista Mexicana de Ingeniera Quimica, 21(1). https://doi.org/10.24275/rmiq/IA2600

ASTM. (2001). Standard Test Method for Acid-Insoluble Lignin in Wood D1106 - 96. ASTM International, 96(Reapproved).

Boontum, A., Phetsom, J., Rodiahwati, W., Kitsubthawee, K., & Kuntothom, T. (2019). Characterization of Diluted-acid Pretreatment of Water Hyacinth. Applied Science and Engineering Progress, 12(4). https://doi.org/10.14416/j.asep.2019.09.003

Cai, J., He, Y., Yu, X., Banks, S. W., Yang, Y., Zhang, X., Yu, Y., Liu, R., & Bridgwater, A. v. (2017). Review of physicochemical properties and analytical characterization of lignocellulosic biomass. In Renewable and Sustainable Energy Reviews (Vol. 76). https://doi.org/10.1016/j.rser.2017.03.072

Chen, L., Zhang, H., Li, J., Lu, M., Guo, X., & Han, L. (2015). A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover. Bioresource Technology, 177. https://doi.org/10.1016/j.biortech.2014.11.060

Danon, B., Hongsiri, W., van der Aa, L., & de Jong, W. (2014). Kinetic study on homogeneously catalyzed xylose dehydration to furfural in the presence of arabinose and glucose. Biomass and Bioenergy, 66. https://doi.org/10.1016/j.biombioe.2014.04.007

Girisuta, B., Janssen, L. P. B. M., & Heeres, H. J. (2007). Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial and Engineering Chemistry Research, 46(6). https://doi.org/10.1021/ie061186z

Gómora-Hernández, J. C., Alcántara-Díaz, D., Fernández-Valverde, S. M., Hernández-Berriel, M. C. (2016). Biohydrogen production by anaerobic digestion of corn cob and stem of faba bean hydrolysates. 2016 XVI International Congress of the Mexican Hydrogen Society, 2016, 1-6. https://doi.org/10.1109/CSMH.2016.7947659.

Gómora-Hernández, J. C., Carreno-De-leon, M. C., & Flores-Alamo, N. (2020). Low temperature hydrochloric acid hydrolysis of corn stover. Kinetic, thermodynamics and characterization. Revista Mexicana de Ingeniera Quimica, 19(3). https://doi.org/10.24275/rmiq/IA1088

Gómora-Hernández, J. C., Carreño-de-León, M. del C., Flores-Alamo, N., Hernández-Berriel, M. del C., & Fernández-Valverde, S. M. (2020). Kinetic and thermodynamic study of corncob hydrolysis in phosphoric acid with a low yield of bacterial inhibitors. Biomass and Bioenergy, 143. https://doi.org/10.1016/j.biombioe.2020.105830

Guerra-Rodríguez, E., Portilla-Rivera, O. M., Jarquín-Enríquez, L., Ramírez, J. A., & Vázquez, M. (2012). Acid hydrolysis of wheat straw: A kinetic study. Biomass and Bioenergy, 36. https://doi.org/10.1016/j.biombioe.2011.11.005

Gurgel, L. V. A., Marabezi, K., Zanbom, M. D., & Curvelo, A. A. D. S. (2012). Dilute acid hydrolysis of sugar cane bagasse at high temperatures: A Kinetic study of cellulose saccharification and glucose decomposition. Part I: Sulfuric acid as the catalyst. Industrial and Engineering Chemistry Research, 51(3).

Han, Y., Ye, L., Gu, X., Luo, C., Zhang, R., Zhao, L., Li, X., & Lu, X. (2019). Sugars production from corn stover after pretreated by nitric acid for biogas fermentation process. Environmental Progress and Sustainable Energy, 38(5). https://doi.org/10.1002/ep.13162

Hsu, T. C., Guo, G. L., Chen, W. H., & Hwang, W. S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology, 101(13). https://doi.org/10.1016/j.biortech.2009.10.009

Jensen, J., Morinelly, J., Aglan, A., Mix, A., & Shonnard, D. R. (2008). Kinetic characterization of biomass dilute sulfuric acid hydrolysis: Mixtures of hardwoods, softwood, and switchgrass. AIChE Journal, 54(6). https://doi.org/10.1002/aic.11467

Jia, W., Zhou, M., Yang, C., Zhang, H., Niu, M., Shi, H. (2022). Evaluating process of auto-hydrolysis prior to kraft pulping on production of chemical pulp for end used paper-grade products. Journal of Bioresources and Bioproducts, 7. https://doi.org/10.1016/j.jobab.2022.05.002

Jin, Q., Zhang, H., Yan, L., Qu, L., & Huang, H. (2011). Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions. Biomass and Bioenergy, 35(10). https://doi.org/10.1016/j.biombioe.2011.06.050

Láinez, M., Ruiz, H. A., Castro-Luna, A. A., & Martínez-Hernández, S. (2018). Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass and Bioenergy, 118. https://doi.org/10.1016/j.biombioe.2018.08.012

Lavarack, B. P., Griffin, G. J., & Rodman, D. (2002). The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy, 23(5). https://doi.org/10.1016/S0961-9534(02)00066-1

Li, Y., Qi, B., Feng, J., Zhang, Y., & Wan, Y. (2018). Effect of combined inorganic with organic acids pretreatment of rice straw on its structure properties and enzymatic hydrolysis. Environmental Progress and Sustainable Energy, 37(2). https://doi.org/10.1002/ep.12703

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3). https://doi.org/10.1021/ac60147a030

Muñoz-Páez, K. M., Alvarado-Michi, E. L., Buitrón, G., & Valdez-Vazquez, I. (2019). Distinct effects of furfural, hydroxymethylfurfural and its mixtures on dark fermentation hydrogen production and microbial structure of a mixed culture. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.04.139

Murillo-Luke, A. E., Herrera-Urbina, J. R., Martínez-Téllez, M. A., Martín-García, A. R. (2022). Acid hydrolysis of hemicellulose from Ipomoea arborescens: kinetics of xylose production. Revista Mexicana de Ingeniera Quimica, 21(2). https://doi.org/10.24275/rmiq/Cat2645

Na, B. il, & Lee, J. W. (2015). Kinetic study on the dilute acid catalyzed hydrolysis of waste mushroom medium. Journal of Industrial and Engineering Chemistry, 25. https://doi.org/10.1016/j.jiec.2014.10.030

Nnaemeka, I. C., Samuel, E., Maxwell, O., Christain, A. O., Chinelo, O. S. (2021). Optimization and kinetic studies for enzymatic hydrolysis and fermentation of colocynths vulgaris Shrad seeds shell for bioethanol production. Journal of Bioresources and Bioproducts, 6. https://doi.org/10.1016/j.jobab.2021.02.004

Pappas, I. A., Koukoura, Z., Tananaki, C., & Goulas, C. (2014). Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. lignocellulosic biomass into fermentable sugars. Bioresource Technology, 166. https://doi.org/10.1016/j.biortech.2014.05.072

Pesce, G. R., Fernandes, M. C., & Mauromicale, G. (2020). Globe artichoke crop residues and their potential for bioethanol production by dilute acid hydrolysis. Biomass and Bioenergy, 134. https://doi.org/10.1016/j.biombioe.2020.105471

Pinales-Márquez, C. D., Rodríguez-Jasso, R. M., Araujo, R. G., Loredo-Treviño, A., Nabarlatz, D., Gullón, B., Ruiz, H. A. (2021). Circular bioeconomy and integrated biorefinery in the production of xylooligosaccharides from lignocellulosic biomass: A review. Industrial Crops & Products, 162. https://doi.org/10.1016/j.indcrop.2021.113274

Ramos-Ibarra, J. R., Arriola-Guevara, E., Toriz, G., Guatemala-Morales, G., Corona-Gonzalez, R. I. (2021).Enzymatic extraction of limonene, limonin and other relevant compounds from Citrus sinensis (orange) and Citrus aurantiifolia (lime) by-products. Revista Mexicana de Ingeniera Quimica, 20 (3). https://doi.org/10.24275/rmiq/Bio2404

Qi, B., Vu, A., Wickramasinghe, S. R., & Qian, X. (2018). Glucose production from lignocellulosic biomass using a membrane-based polymeric solid acid catalyst. Biomass and Bioenergy, 117. https://doi.org/10.1016/j.biombioe.2018.07.017

Qin, S., Giri, S. B., Patel, A. K., Sar, T., Liu, H., Chen, H., Juneja, A., Kumar, D., Zhang, Z., Awasthi, M. K., Taherzadeh, M. J. (2021). Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. Bioresource Technology, 321. https://doi.org/10.1016/j.biortech.2020.124496

Rafiqul, I. S. M., & Mimi Sakinah, A. M. (2012). Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chemical Engineering Science, 71. https://doi.org/10.1016/j.ces.2011.11.007

Rojas-Rejón, O. A., & Sánchez, A. (2014). The impact of particle size and initial solid loading on thermochemical pretreatment of wheat straw for improving sugar recovery. Bioprocess and Biosystems Engineering, 37(7). https://doi.org/10.1007/s00449-013-1115-z

Romaní, A., Tomaz, P. D., Garrote, G., Teixeira, J. A., & Domingues, L. (2016). Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresource Technology, 220. https://doi.org/10.1016/j.biortech.2016.08.077

Saeman, J. F. (1945). Kinetics of Wood Saccharification - Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature. Industrial & Engineering Chemistry, 37(1). https://doi.org/10.1021/ie50421a009

Sahoo, D., Ummalyma, S. B., Okram, A. K., Pandey, A., Sankar, M., & Sukumaran, R. K. (2018). Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresource Technology, 253. https://doi.org/10.1016/j.biortech.2018.01.048

Shao, X., Wang, J., Liu, Z., Hu, N., Liu, M., Xu, Y. (2020). Preparation and characterization of porous microcrystalline cellulose from corncob. Industrial Crops & Products. 151. https://doi.org/10.1016/j.indcrop.2020.112457

Shokrkar, H., Ebrahimi, S., Zamani, M. (2017). Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel, 200. https://doi.org/10.1016/j.fuel.2017.03.090

Solarte-Toro, J. C., Romero-García, J. M., Martínez-Patiño, J. C., Ruiz-Ramos, E., Castro-Galiano, E., & Cardona-Alzate, C. A. (2019). Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renewable and Sustainable Energy Reviews, 107. https://doi.org/10.1016/j.rser.2019.02.024

Sun, Y. G., Ma, Y. L., Chang, X., Pan, G. Y., & Li, Y. Y. (2015). Optimization design to study the effect of acid-catalyzed hydrolysis of corn stalk using severity and statistical model for high solid and liquid phase recovery. Biomass and Bioenergy, 77. https://doi.org/10.1016/j.biombioe.2015.03.033

Sun, Y., Yang, G., Jia, Z.-H., Wen, C., & Zhang, L. (2014). Acid hydrolysis of corn stover using hydrochloric acid: Kinetic modeling and statistical optimization. Chemical Industry and Chemical Engineering Quarterly, 20(4). https://doi.org/10.2298/ciceq130911035s

Swati, G., Haldar, S., Ganguly, A., & Chatterjee, P. K. (2013). Investigations on the kinetics and thermodynamics of dilute acid hydrolysis of Parthenium hysterophorus L. substrate. Chemical Engineering Journal, 229. https://doi.org/10.1016/j.cej.2013.05.111

Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., & Goud, V. v. (2015). Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: A comparative study. Biomass and Bioenergy, 81. https://doi.org/10.1016/j.biombioe.2015.05.006

Tizazu, B. Z., & Moholkar, V. S. (2018). Kinetic and thermodynamic analysis of dilute acid hydrolysis of sugarcane bagasse. Bioresource Technology, 250. https://doi.org/10.1016/j.biortech.2017.11.032

Ventura-Cruz, S., Tecante, A. (2021). Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and applications as reinforcement in polymeric matrices. Food Hydrocolloids, 118. https://doi.org/10.1016/j.foodhyd.2021.106771

Wise, L. E., Maxine, M., & D’Addieco, A. A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Technical Association of Pulp and Paper Industry, 29.

Xiang, Q., Lee, Y. Y., Petterson, P. O., & Torget, R. W. (2003). Heterogeneous aspects of acid hydrolysis of α-cellulose. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 107(1–3). https://doi.org/10.1385/ABAB:107:1-3:505

Yan, L., Greenwood, A. A., Hossain, A., & Yang, B. (2014). A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Advances, 4(45). https://doi.org/10.1039/c4ra01631a

Published
2022-09-05
How to Cite
Gómora-Hernández, J., Carreño-de-León, M. del C., Cuellar-Robles, F., & Flores-Alamo, N. (2022). Sugar production by dilute acid hydrolysis of oat bagasse with three different acids: kinetics and thermodynamics. Revista Mexicana De Ingeniería Química, 21(3), IA2822. https://doi.org/10.24275/rmiq/IA2822
Section
Environmental Engineering

Most read articles by the same author(s)