Analysis of the thermal efficiency of flat plate solar air heaters considering environmental conditions using artificial neural networks

  • M. Calderón-Ramírez Tecnológico Nacional de México. CRODE de Celaya https://orcid.org/0000-0002-7910-0332
  • J.A. Gomez-Náfate 2Tecnológico Nacional de México. Instituto Tecnológico de Celaya, Programa de Doctorado en Ciencias de la Ingeniería https://orcid.org/0000-0001-8690-2328
  • B. Ríos-Fuentes Tecnológico Nacional de México. Instituto Tecnológico de Celaya, Programa de Doctorado en Ciencias de la Ingeniería https://orcid.org/0000-0002-5470-8261
  • R. Rico-Martínez ecnológico Nacional de México. Instituto Tecnológico de Celaya, Departamento de Ingeniería Química https://orcid.org/0000-0001-7033-7432
  • J.J. Martínez-Nolazco Tecnológico Nacional de México. Instituto Tecnológico de Celaya, Departamento de Ingeniería Mecatrónica https://orcid.org/0000-0003-4080-1286
  • J.E. Botello-Álvarez Tecnológico Nacional de México. Instituto Tecnológico de Celaya, Programa de Doctorado en Ciencias de la Ingeniería. https://orcid.org/0000-0002-8716-2066
Keywords: Solar collector, thermic efficiency, Artificial Neural Network, design parameters.

Abstract

The variance analysis and Artificial Neural Networks were employed to characterize the thermal efficiency in an Air Solar Heater (ASH), evaluating the effects of the design variables: the depth, material and thickness of the absorber plate and inlet airflow. Using Artificial Neural Networks, it was possible to correlate and estimate the effects of uncontrolled environmental variables on thermal efficiency. Incident solar radiation is the environmental factor with the greatest relevant effect on the thermal efficiency of ASH; due to the inability of the absorber plate to receive, store and transfer the abundant solar energy to the air. The most relevant variables in the design were the material and the thickness of absorbed plate, nevertheless, these variables have opposite behaviors on thermal efficiency under conditions of high and low solar incidence. Under this proposed methodology, it was possible to evaluate and know the effect of the design variables studied, even with the high effect of the prevailing environmental conditions.

References

Abuşka, M. (2018). Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Applied Thermal Engineering, 131, 115–124. https://doi.org/10.1016/j.applthermaleng.2017.11.129

Barrera-Calva1, E., Martínez-Flores, J. C., Avila-García, A., Rodil, S., Huerta-Arcos, L., Viveros-García, T. (2005). Superficial characterization of Co and Co-Fe oxide. Revista Mexicana de Ingeniería Química, Vol. 4, 147-156.

Bahrehmand, D., & Ameri, M. (2015). Energy and exergy analysis of different solar air collector systems with natural convection. Renewable Energy, 74, 357–368. https://doi.org/10.1016/j.renene.2014.08.028

Compton, M., Willis, S., Rezaie, B., & Humes, K. (2018). Food processing industry energy and water consumption in the Pacific northwest. Innovative Food Science and Emerging Technologies, 47(2017), 371–383. https://doi.org/10.1016/j.ifset.2018.04.001

Delfani, S., Esmaeili, M., & Karami, M. (2019). Application of artificial neural network for performance prediction of a nanofluid-based direct absorption solar collector. Sustainable Energy Technologies and Assessments, 36(October), 100559. https://doi.org/10.1016/j.seta.2019.100559

Diez, F. J., Navas-Gracia, L. M., Martínez-Rodríguez, A., Correa-Guimaraes, A., & Chico-Santamarta, L. (2019). Modelling of a flat-plate solar collector using artificial neural networks for different working fluid (water) flow rates. Solar Energy, 188(July), 1320–1331. https://doi.org/10.1016/j.solener.2019.07.022

El-Sebaii, A. A., Al-Snani, H. (2010). Effect of selective coating on thermal performance of plate solar air heaters. Energy, 35, 1820-1828. https://doi.org/10.1016/j.energy.2009.12.037

Elsheikh, A. H., Sharshir, S. W., Abd Elaziz, M., Kabeel, A. E., Guilan, W., & Haiou, Z. (2019). Modeling of solar energy systems using artificial neural network: A comprehensive review. Solar Energy, 180(January), 622–639. https://doi.org/10.1016/j.solener.2019.01.037

Heydari, A., & Mesgarpour, M. (2018). Experimental analysis and numerical modeling of solar air heater with helical flow path. Solar Energy, 162(November 2017), 278–288. https://doi.org/10.1016/j.solener.2018.01.030

IRENA. (2020). Renewable Energy Can Support Resilient and Equitable Recovery. https://www.irena.org/newsroom/pressreleases/2020/Apr/Renewable-energy-can-support-resilient-and-equitable-recovery

Karwa, R., Srivastava, V. (2013). Thermal performance of solar air heater having absorber plate with V – Down discrete rib roughness for space – heating applications. Journal of Renewable Energy.1-13. http://dx.doi.org/10.1155/2013/151578

Kabeel, A. E., Hamed, M. H., Omara, Z. M., & Kandeal, A. W. (2017). Solar air heaters: Design configurations, improvement methods and applications – A detailed review. Renewable and Sustainable Energy Reviews, 70(December), 1189–1206. https://doi.org/10.1016/j.rser.2016.12.021

Kumar, M., Sansaniwal, S. K., & Khatak, P. (2016). Progress in solar dryers for drying various commodities. Renewable and Sustainable Energy Reviews, 55, 346–360. https://doi.org/10.1016/j.rser.2015.10.158

Liao, W., Heo, Y., & Xu, S. (2019). Simplified vector-based model tailored for urban-scale prediction of solar irradiance. Solar Energy, 183(August 2018), 566–586. https://doi.org/10.1016/j.solener.2019.03.023

ONU. (2015). Energía asequible y no contaminante. https://www.un.org/sustainabledevelopment/es/energy/

Montgomery, D. C. (2004) Diseño y análisis de experimentos. Segunda Edición. Editorial Limusa S.A. de C.V. México.

Sanjuan, N., Stoessel, F., & Hellweg, S. (2014). Closing Data Gaps for LCA of Food Products: Estimating the Energy Demand of Food Processing. Environ. Sci. Technol., 48(2), 1132–1140. https://doi.org/https://doi.org/10.1021/es4033716

Sharma, A., Shukla, A., & Aye, L. (Eds.). (2018). Low Carbon Energy Supply. Springer Singapore. https://doi.org/10.1007/978-981-10-7326-7

Singh Bisht, V., Kumar Patil, A., & Gupta, A. (2018). Review and performance evaluation of roughened solar air heaters. Renewable and Sustainable Energy Reviews, 81(August 2017), 954–977. https://doi.org/10.1016/j.rser.2017.08.036

Singh, I., & Singh, S. (2018). A review of artificial roughness geometries employed in solar air heaters. Renewable and Sustainable Energy Reviews, 92(December 2017), 405–425. https://doi.org/10.1016/j.rser.2018.04.108

Sowmy, D. S., Schiavon Ara, P. J., & Prado, R. T. A. (2017). Uncertainties associated with solar collector efficiency test using an artificial solar simulator. Renewable Energy, 108, 644–651. https://doi.org/10.1016/j.renene.2016.08.054

Sözen, A., Menlik, T., & Ünvar, S. (2008). Determination of efficiency of flat-plate solar collectors using neural network approach. Expert Systems with Applications, 35(4), 1533–1539. https://doi.org/10.1016/j.eswa.2007.08.080

Published
2022-10-12
How to Cite
Calderón-Ramírez, M., Gomez-Náfate, J., Ríos-Fuentes, B., Rico-Martínez, R., Martínez-Nolazco, J., & Botello-Álvarez, J. (2022). Analysis of the thermal efficiency of flat plate solar air heaters considering environmental conditions using artificial neural networks. Revista Mexicana De Ingeniería Química, 21(3), Sim2833. https://doi.org/10.24275/rmiq/Sim2833
Section
Simulation and control