Additive effect of alternative treatment to chemical control of Botrytis cinerea in blueberries
Abstract
The blueberry crop is mainly attacked by the phytopathogen Botrytis cinerea, being very aggressive for this plant, showing resistance to synthetic fungicides. Non-chemical alternatives such as chitosan and salicylic acid have been proposed for its control. Therefore, the objective of this study was to evaluate the combination of these compounds for the control of Botrytis cinerea. The in vitro evaluation showed percentages of fungal growth inhibition of 60% and 100% inhibition of sporulation and germination of the phytopathogen. The micrographs showed damage to fungal structures of B. cinerea under the application of the treatments due to the additive effect demonstrated by combining chitosan and salicylic acid. Likewise, there was a great reactivity when combining these compounds, favoring the attack on the phytopathogen and increasing the in vivo effect by reducing the decomposition rate of blueberries by 60% compared to the control.
References
Bautista-Baños, S., Ventura-Aguilar, R. I., Correa-Pacheco, Z. and Corona-Rangel, M. L. (2017). Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in postharvest – a review. Revista Chapingo Serie Horticultura XXIII:103–121. https://doi.org/10.5154/r.rchsh.2016.11.030
Berumen-Guerrero, L., Ortega-Hernández, E., Gastélum-Estrada, A., Hurtado-Romero, A., Navarro-López, D., Benavides, J. and Jacobo-Velázquez, D. (2020). Chitosan enhances the production of antioxidant phenolic compounds in carrot through a synergistic effect with wounding stress. Revista Mexicana de Ingeniería Química, 19(1), 375–384. https://doi.org/10.24275/rmiq/Alim1764
Berumen Varela, G. Ochoa Jiménez, V. A., Báez Sañudo, R. and Gutiérrez Martínez, P. (2015). Efecto del ácido salicílico en la inducción de resistencia a Colletotrichum sp. en frutos de plátano durante postcosecha. Revista Iberoamericana Tecnología Postcosecha 16:27–34
Coronado-Partida, L., Serrano, M., Romanazzi, G., González-Estrada, R. R. and Gutierrez-Martinez, P. (2021). Application of GRAS compounds to control soft rot in jackfruit. TIP Revista Especializada en Ciencias Químico-Biológicas 24:1–7. https://doi.org/10.22201/fesz.23958723e.2021.327
da Rocha Neto, A. C., Luiz, C., Maraschin, M. and Di Piero, R. M. (2016). Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. International Journal Food Microbiology 221:54–60. https://doi.org/10.1016/j.ijfoodmicro.2016.01.007
da Rocha Neto, A. C., Luiz, C., Maraschin, M. and Di Piero, R. M (2015). Efficacy of salicylic acid to reduce Penicillium expansum inoculum and its possible mechanisms of action. International Journal Food Microbiology. https://doi.org/10.1016/j.ijfoodmicro.2015.08.018
Duan, C., Meng, X., Meng, J., Khan, Md. I. H., Dai, L., Khan, A., An, X., Zhang, J., Huq, T. and Ni, Y. (2019). Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. Journal of Bioresources and Bioproducts 4:11–21. https://doi.org/10.21967/jbb.v4i1.189
Gutierrez-Martinez, P., Ledezma-Morales, A., Romero-Islas, L. del C., Ramos-Guerrero, A., Romero-Islas, J., Rodríguez-Pereida, C., Casas-Junco, P., Coronado-Partida, L. and González-Estrada, R. (2018). Antifungal Activity of Chitosan against Postharvest Fungi of Tropical and Subtropical Fruits. Chitin-Chitosan - Myriad Functional Science Technology. https://doi.org/10.5772/intechopen.76095
Herrera-González, J. A, Hernández-Sánchez, D. A., Bueno-Rojas, D., Ramos-Bell, S., Velázquez-Estrada, R. M., Bautista-Rosales, P. U, and Gutiérrez-Martínez, P. (2022). Effect of commercial chitosan on in vitro inhibition of Colletotrichum siamense, fruit quality and elicitor effect on postharvest avocado fruit. Revista Mexicana de Ingeniería Química (21), 1–5. https://doi.org/doi.org/10.24275/rmiq/Bio2706
Jiang, H., Sun, Z., Jia, R., Wang, X. and Huang, J. (2016). Effect of Chitosan as an Antifungal and Preservative Agent on Postharvest Blueberry. Journal Food Quality 39:516–523. https://doi.org/10.1111/jfq.12211
Kong, J., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H. and Yao, W. (2021). Synergistic antifungal mechanism of thymol and salicylic acid on Fusarium solani. Lwt 140:110787. https://doi.org/10.1016/j.lwt.2020.110787
Kumaraswamy, R. V., Kumari, S., Choudhary, R. C, Sharma, S. S., Pal, A., Raliya, R., Biswas, P. and Saharan, V. (2019). Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plant. International Journal of Biological Macromolecules 123:59–69. https://doi.org/10.1016/j.ijbiomac.2018.10.202
Liu, B., Wang, K., Shu, X., Liang, J., Fan, X. and Sun, L. (2019). Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage. Scientia Horticulturae (Amsterdam) 246:557–562. https://doi.org/10.1016/j.scienta.2018.11.042
Mejía, R. J., Martínez, M. T. and Lara, P. D. (2020). Quitosano: actividad antimicrobiana y mecanismos de acción. e-CUCBA 17–23. https://doi.org/10.32870/e-cucba.v0i9.98
Mekawi, E. M., Khafagi, E. Y. and Abdel-Rahman, F. A. (2019). Effect of pre-harvest application with some organic acids and plant oils on antioxidant properties and resistance to Botrytis cinerea in pepper fruits. Scientia Horticulturae (Amsterdam) 257:108736. https://doi.org/10.1016/j.scienta.2019.108736
Meng, D., Garba, B., Ren, Y., Yao, M., Xia, X., Li, M. and Wang, Y. (2020). Antifungal activity of chitosan against Aspergillus ochraceus and its possible mechanisms of action. International Journal of Biological Macromolecules 158:1063–1070. https://doi.org/10.1016/j.ijbiomac.2020.04.213
Milinčić, D. D., Vojinović, U. D., Kostić, A., Pešić, M. B., Špirović, T., Bojana, D., Brkić, D. V., Stević, M., Kojić, M. O. and Stanisavljević, N. S. (2020). In vitro assessment of pesticide residues bioaccessibility in conventionally grown blueberries as affected by complex food matrix. Chemosphere 252. https://doi.org/10.1016/j.chemosphere.2020.126568
Narenderan, S. T, Meyyanathan, S. N. and Babu, B. (2020). Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Research International (2020), doi: https://doi.org/10.1016/j.foodres.2020.109141
Nasonova, A., Cohen, Y., Poverenov, E. and Borisover, M. (2020). Binding interactions of salicylic acid with chitosan and its N-alkylated derivative in solutions: An equilibrium dialysis study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 603:125202. https://doi.org/10.1016/j.colsurfa.2020.125202
National Center for Biotechnology Information (2022a). PubChem Compound Summary for CID 71853, Chitosan. Retrieved May 3, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Chitosan.
National Center for Biotechnology Information (2022b). PubChem Compound Summary for CID 338, Salicylic acid. Retrieved May 3, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Salicylic-acid.
Palma-Guerrero, J., Jansson, H. B., Salinas, J. and Lopez-Llorca, L. V. (2008). Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal Applied Microbiology 104:541–553. https://doi.org/10.1111/j.1365-2672.2007.03567
Peian, Z., Haifeng, J., Peijie, G., Sadeghnezhad, E., Qianqian, P., Tianyu, D., Teng, L., Huanchun, J. and Jinggui, F. (2021). Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Food Chemistry 337:127772. https://doi.org/10.1016/j.foodchem.2020.127772
Peralta-Ruiz, Y., Grande, T. C., Sinning-Mangonez A., Bermont, D., Pérez Cordero, A., Paparella, A. and Chaves-López, C. (2020). Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. International Journal Food Microbiology 326:108649. https://doi.org/10.1016/j.ijfoodmicro.2020.108649
Ramírez-Benítez, J. E., Arjona Sabido, R. A., Caamal Velázquez, J. H., Rodríguez Ávila, N. L., Solís Pereira, S. E. and Lizama Uc., G. (2019). Growth inhibition and genetic modification of Phytophthora capsici using chitosan with low degree of polymerization. Revista Argentina Microbiología 51:12–17. https://doi.org/10.1016/j.ram.2018.03.003
Ramos-Guerrero, A., González-Estrada, R. R., Hanako-Rosas, G., Bautista-Baños, S., Acevedo-Hernández, G., Tiznado-Hernández, M. E. and Gutiérrez-Martínez, P. (2018). Use of inductors in the control of Colletotrichum gloeosporioides and Rhizopus stolonifer isolated from soursop fruits: in vitro tests. Food Science and Biotechnology 27:755–763. https://doi.org/10.1007/s10068-018-0305-5
Ramos-Guerrero, A., González-Estrada, R. R., Romanazzi G, Landi, L. and Gutiérrez-Martínez, P. (2020). Effects of chitosan in the control of postharvest anthracnose of soursop (Annona muricata) Fruit. Revista Mexicana de Ingeniería Química. 19(1), 99–108. https://doi.org/10.24275/rmiq/Bio527
Ramos Bell, S., Hernández Montiel, L.G., González Estrada, R.R. and Gutiérrez Martínez, P. (2021). Main diseases in postharvest blueberries, conventional and eco-friendly control methods: A review. Lwt 149:7–12. https://doi.org/10.1016/j.lwt.2021.112046
Rayón-Díaz, E., Birke-Biewendt, A. B., Velázquez-Estrada, R. M., González-Estrada, R. R., Ramírez-Vázquez, M., Rosas-Saito, G. H. and Gutiérrez-Martínez, P. (2021). Sodium silicate and chitosan: an alternative for the in vitro control of Colletotrichum gloeosporioides isolated from papaya (Carica papaya L.). Revista Bio Ciencias 8, e1059. https://doi.org/10.15741/revbio.08.e1059
Saito, S., Obenland, D. and Xiao, C.L. (2020). Influence of sulfur dioxide-emitting polyethylene packaging on blueberry decay and quality during extended storage. Postharvest Biology and Technology 160:111045. https://doi.org/10.1016/j.postharvbio.2019.111045
Sautua, F.J., Baron, C., Pérez-Hernández, O. and Carmona, M.A. (2019). First report of resistance to carbendazim and procymidone in Botrytis cinerea from strawberry, blueberry and tomato in Argentina. Crop Protection 125:2017–2020. https://doi.org/10.1016/j.cropro.2019.104879
Shao, Y. z., Zeng, J. k., Tang, H., Zhou, Y. and Li, W. (2019). The chemical treatments combined with antagonistic yeast control anthracnose and maintain the quality of postharvest mango fruit. Journal of Integrative Agriculture 18:1159–1169. https://doi.org/10.1016/S2095-3119(18)62128-8
Shi, Z., Wang, F., Lu, Y. and Deng, J. (2018). Combination of chitosan and salicylic acid to control postharvest green mold caused by Penicillium digitatum in grapefruit fruit. Science Horticulturae (Amsterdam) 233:54–60. https://doi.org/10.1016/j.scienta.2018.01.039
Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L. and Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology 119:41–48. https://doi.org/10.1016/j.postharvbio.2016.04.015
Yang, Z., Fang, Y. and Ji, H. (2016). Controlled release and enhanced antibacterial activity of salicylic acid by hydrogen bonding with chitosan. Chinese Journal of Chemical Engineering 24:421–426. https://doi.org/10.1016/j.cjche.2015.08.008

Copyright (c) 2022 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.