A hydrodynamic model to describe CaCO3 deposit formation in pipelines

  • H. Gómez-Yáñez Candidato a doctor, Dr(C). UNAM-FI.
  • G.T. Lapidus-Lavine Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa


Calcium carbonate deposition inside of pipes is a widespread problem in aqueous fluid transport systems, where calcium and carbonate ions are dissolved. The present study describes the physical and chemical phenomena of mass transport of the chemical species, from the bulk solution to the pipe walls, inside a straight circular pipe. The mass transfer coefficient is estimated using correlations for developing laminar flow. The controlling mechanism is assigned using the Damköhler number and the model simulation results are analyzed for three scenarios: when mass transfer controls the deposition, by mixed control or by the deposition kinetics. If mass transfer is the controlling mechanism, the deposit was concentrated at the pipe entrance, while with kinetic control, it forms further downstream. This study found that most important factor influencing the deposition process is the bulk and superficial pH values.


Bailey, B., Crabtree, M., and Tyrie, J. (2000). Water Control. Oilfield Review. 12(1), 30-51.

Chan, S., and Ghassemi, K. (1991). Analytical Modeling of Calcium Carbonate Deposition for Laminar Falling Films and Turbulent Flow in Annuli: Part I -Formulation and Single-Species Model. Journal of Heat Transfer. 735-740. https://doi.org/10.1115/1.2910625

Chan, S., and Ghassemi, K. (1991). Analytical Modeling of Calcium Carbonate Deposition for Laminar Falling Films and Turbulent Flow in Annuli: Part II - Multispecies model. Journal of Heat Transfer, 741-746. https://doi.org/10.1115/1.2910626

Cussler, E. (2009). Diffusion: Mass Transfer in Fluid Systems. 3rd edition. Cambridge University Press, USA.

Cowan, J., and Weintritt, D. (1976). Water-Formed Scale Deposits. Gulf Publishing Company, USA.

Crabtree, M., Eslinger, D., Fletcher, P., Miller, M., Johnson, A. and King, G. (1999). Fighting Scale — Removal and Prevention. Oilfield Review. 11(3), 30-46.

Epelle, E., and Dimitrios G (2018). A CFD investigation of the effect of particle sphericity on wellbore cleaning efficiency during oil and gas drilling Proceedings of the 28th European Symposium on Computer Aided Process Engineering. https://doi.org/10.1016/B978-0-444-64235-6.50024-3

Eroni, V., Neville, A., Kapur, N. and Euvrad. M. (2013). New insight into the relation between bulk precipitation and surface deposition of calcium carbonate mineral scale. Desalination and Water Treatment, 51, 882-891.

Kammal, M., Hussein, I., Mahmoud, M., Sultan, A., and Mohammed. A. (2018). Oilfield Scale Formation and Chemical Removal: A review. Journal of Petroleum Science and Engineering, 171, 127 – 139. https://doi.org/10.1016/j.petrol.2018.07.037

Kang, P. S., Hwang, J. Y., and Lim, J. S. (2018). Flow Rate Effect on Wax Deposition Behavior in Single-Phase Laminar Flow. Journal of Energy Resources Technology, 141(3), 032903. https://ph02.tci-thaijo.org/index.php/MIJEEC

Lapidus, G. (1992). Mathematical Modelling of Metal Leaching in Nonporous Minerals. Chemical Engineering Science. 47(8), 1933-1941. https://doi.org/10.1016/0009-2509(92)80311-Y

Lobo-Oehmichen, R. (2007). Principios de transferencia de masa. Universidad Autónoma Metropolitana, México.

Lake, L., W. (1989). Enhanced oil recovery. Prentice Hall. USA.

Lévêque, J. (1928), Annales des Mines, Memoires, Series 12, 13, 201-299, 305-362, 381-415.

MEDUSA. KTH Royal Institute of Technology. School of Chemical Science and Engineering: https://www.kth.se/en/che/medusa/downloads-1.386254. Accessed June 2017.

Rostron, P. (2018). Critical Review of Pipeline Scale Measurement Technologies, MOJ Mining and Metallurgy, 1(1), 22 – 35.

Segev, R., Hasson, D. and Semiat, R. (2012). Rigorous Modeling of the Kinetics of Calcium Carbonate Deposit Formation. AIChE Journal, 58(4), 1222-1229. https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.12645

Skelland, A. (1974). Diffusional Mass Transfer. John Wiley & Sons, Cambridge. USA.

Society of Petroleum Engineers. (2017). Scale Problems in Production. Available at: http://petrowiki.org/Scale_problems_in_production. Accessed: September 2017.

Weichers, S., Sturrock, P., and Marais, G. (1975). Calcium carbonate crystallization kinetics. Water Research. 9(9), 835-845. https://doi.org/10.1016/0043-1354(75)90143-8

Wolthers, M., Nehrke, G., Gustafsson, J.P., and Van Cappellan, P. (2012). Calcite growth kinetics: Modeling the effect of solution stoichiometry, Geochimica et Cosmochimica Acta. 77, 121-134. https://doi.org/10.1016/j.gca.2011.11.003

Zhang, P., Zhang, Z., Liu, Y., Kan, T., and Tomson M. (2018). Investigation of the impact of ferrous species on the performance of common oilfield scale inhibitors for mineral scale control, Journal of Petroleum Science and Engineering. 172, 288-296. https://doi.org/10.1016/j.petrol.2018.09.069

Zhang Y. and Dawe, R. (1997). The kinetics of the calcite precipitation from a high salinity water. Applied Geochemistry. 13, 177-184. https://doi.org/10.1016/S0883-2927(97)00061-9

Zhang Y, Shaw H, Farquhar R and Dawe, A. (2001). The kinetics of carbonate scaling—application for the prediction of downhole carbonate scaling. J Petrol Sci Eng. 29, 85–95. https://doi.org/10.1016/S0920-4105(00)00095-4

Zhu, G., Li, H., Li, S., Hou, X., Xu, D., Lin, R. and Tang, Q. (2015). Crystallization behavior and kinetics of calcium carbonate in highly alkaline and supersaturated system, Journal of Crystal Growth. 428, 16-23. https://doi.org/10.1016/j.jcrysgro.2015.07.009

How to Cite
Gómez-Yáñez, H., & Lapidus-Lavine, G. (2022). A hydrodynamic model to describe CaCO3 deposit formation in pipelines. Revista Mexicana De Ingeniería Química, 21(3), Fen2849. https://doi.org/10.24275/rmiq/fen2849
Transport phenomena