Efficiency parameters that effectively correspond with hydrogen production from VFAs in microbial electrolysis cells

  • B. Cercado Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C.
  • V. Ruiz
  • G. Buitrón
Keywords: cathodic efficiency, coulombic efficiency, hydrogen yield, MEC, reliability

Abstract

Microbial electrolysis cells (MECs) are hybrid systems that include characteristics of bioreactors and electrochemical cells. Primary parameters, such as substrate removal, current density and hydrogen production, and secondary parameters, such as coulombic efficiency, cathodic efficiency and hydrogen yield, determine the performance of MECs. The present work aimed to assess primary and secondary parameters in an MEC fed volatile fatty acids (VFAs) to determine those that most reliably describe the MEC performance in a model setup for hydrogen production. MECs were operated at 0.6 V and fed acetic, propionic and butyric acid mixtures in successive feeding cycles. The main performance parameters were chemical oxygen demand removal COD (84.7 ± 0.5 %), current density (378 ± 7 mA m-2) and hydrogen production (267 mL L-1 d-1), which resulted in repeatable and more reliable efficiency parameters when MECs were fed acetate than when they were fed VFA mixtures. Both the current density and hydrogen production curves showed similar inflection points, thus giving accuracy to the cathodic efficiency determination (162.1 % -169.6 %). Hydrogen yield was not a reliable parameter with the three-VFA mixture since hydrogen production and COD removal curves showed no correlation. These findings indicate that MEC assessment should be verified via the correspondence between primary and secondary parameters.

References

Cercado, B., Chazaro-Ruiz, L.F., Ruiz, V., Lopez-Prieto, I.D., Buitron, G. and Razo-Flores, E. (2013). Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Biosensors & Bioelectronics 50, 373-381. doi:10.1016/j.bios.2013.06.051.

Chookaew, T., O-Thong, S. and Prasertsan, P. (2014). Biohydrogen production from crude glycerol by immobilized Klebsiella sp TR17 in a UASB reactor and bacterial quantification under non-sterile conditions. International Journal of Hydrogen Energy 39, 9580-9587. doi:10.1016/j.ijhydene.2014.04.083.

Dorazco-Delgado, J., Serment-Guerrero, J.H., Fernández-Valverde, S.M., Carreño-de-León, M.C. and Gómora-Hernández, J.C. (2021). Voltage production and simultaneous municipal wastewater treatment in microbial fuel cells performed with Clostridium strains. Revista Mexicana de Ingeniería Química 20, IA2325. doi:10.24275/rmiq/IA2325.

Elbeshbishy, E., Dhar, B.R., Nakhla, G. and Lee, H.S. (2017). A critical review on inhibition of dark biohydrogen fermentation. Renewable & Sustainable Energy Reviews 79, 656-668. doi:10.1016/j.rser.2017.05.075.

Escapa, A., Lobato, A., Garcia, D.M. and Moran, A. (2013). Hydrogen production and COD elimination rate in a continuous microbial electrolysis cell: The influence of hydraulic retention time and applied voltage. Environmental Progress & Sustainable Energy 32, 263-268. doi:10.1002/ep.11619.

Freguia, S., Teh, E.H., Boon, N., Leung, K.M., Keller, J. and Rabaey, K. (2010). Microbial fuel cells operating on mixed fatty acids. Bioresource Technology 101, 1233-1238. doi:10.1016/j.biortech.2009.09.054.

Garcia-Amador, R., Hernandez, S., Ortiz, I. and Cercado, B. (2019). Assesment of microbial electrolysis cells fed hydrolysate from agave bassase to determine the feasability of biohydrogen production. Revista Mexicana de Ingenieria Quimica 18, 865-874. doi:10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Garcia.

Gonzalez-Paz, J.R., Ordaz, A., Jan-Roblero, J., Fernandez-Linares, L.C. and Guerrero-Barajas, C. (2020). Sulfate reduction in a sludge gradually acclimated to acetate as the sole electron donor and its potential application as inoculum in a microbial fuel cell. Revista Mexicana de Ingenieria Quimica 19, 1053-1068. doi:10.24275/rmiq/IA805.

Ivanov, I., Ren, L.J., Siegert, M. and Logan, B. E. (2013). A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment. International Journal of Hydrogen Energy 38, 13135-13142. doi:10.1016/j.ijhydene.2013.07.123.

Lalaurette, E., Thammannagowda, S., Mohagheghi, A., Maness, P.C. and Logan, B.E. (2009). Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. International Journal of Hydrogen Energy 34, 6201-6210. doi:10.1016/j.ijhydene.2009.05.112.

Li, X.H., Liang, D.W., Bai, Y.X., Fan, Y.T. and Hou, H.W. (2014). Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement. International Journal of Hydrogen Energy 39, 8977-8982. doi:10.1016/j.ijhydene.2014.03.065.

Liu, W.Z., Huang, S.C., Zhou, A.J., Zhou, G.Y., Ren, N.Q., Wang, A.J. and Zhuang, G.Q. (2012). Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge. International Journal of Hydrogen Energy 37, 13859-13864. doi:10.1016/j.ijhydene.2012.04.090.

Logan, B.E. and Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337, 686-690. doi:10.1126/science.1217412.

Lu, L., Ren, N.Q., Xing, D.F. and Logan, B.E. (2009). Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosensors & Bioelectronics 24, 3055-3060. doi:10.1016/j.bios.2009.03.024.

Paz-Mireles, C.L., Razo-Flores, E., Trejo, G. and Cercado, B. (2019). Inhibitory effect of ethanol on the experimental electrical charge and hydrogen production in microbial electrolysis cells (MECs). Journal of Electroanalytical Chemistry 835, 106-113. doi:10.1016/j.jelechem.2019.01.028.

Rivera, I., Buitron, G., Bakonyi, P., Nemestothy, N. and Belafi-Bako, K. (2015). Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent. Journal of Applied Electrochemistry 45, 1223-1229. doi:10.1007/s10800-015-0864-6.

Rosales-Sierra, A., Rosales-Mendoza, S., Monreal-Escalante, E., Celis, L.B., Razo-Flores, E. and Cercado, B. (2017). Acclimation strategy using complex volatile fatty acid mixtures increases the microbial fuel cell (MFC) potential. Chemistryselect 2, 6277-6285. doi:10.1002/slct.201701267.

Ruiz, V., Ilhan, Z.E., Kang, D.-W., Krajmalnik-Brown, R. and Buitron, G. (2014). The source of inoculum plays a defining role in the development of MEC microbial consortia fed with acetic and propionic acid mixtures. Journal of Biotechnology 182, 11-18. doi:10.1016/j.jbiotec.2014.04.016.

Sasaki, K., Morita, M., Sasaki, D., Matsumoto, N., Ohmura, N. and Igarashi, Y. (2012). Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry. Biochemical Engineering Journal 68, 104-108. doi:10.1016/j.bej.2012.07.014.

Segundo-Aguilar, A., Gonzalez-Gutierrez, L.V., Paya, V.C., Feliu, J., Buitron, G. and Cercado, B. (2021). Energy and economic advantages of simultaneous hydrogen and biogas production in microbial electrolysis cells as a function of the applied voltage and biomass content. Sustainable Energy and Fuels 5, 2003-2017. doi:10.1039/d0se01797c.

Serrano-Meza, A., Garzon-Zuniga, M.A., Barragan-Huerta, B.E., Estrada-Arriaga, E.B., Almaraz-Abarca, N. and Garcia-Olivares, J.G. (2020). Anaerobic digestion inhibition indicators and control strategies in processes treating industrial wastewater and wastes. Revista Mexicana de Ingenieria Quimica 19, 29-44. doi:10.24275/rmiq/IA1221.

Sevda, S., Dominguez-Benetton, X., Vanbroekhoven, K., De Wever, H., Sreekrishnan, T.R. and Pant, D. (2013). High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Applied Energy 105, 194-206. doi:10.1016/j.apenergy.2012.12.037.

Sharma, M., Bajracharya, S., Gildemyn, S., Patil, S.A., Alvarez-Gallego, Y., Pant, D., Rabaey, K. and Domínguez-Benetton, X. (2014). A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochimica Acta 140, 191-208. doi:10.1016/j.electacta.2014.02.111.

Teng, S.X., Tong, Z.H., Li, W.W., Wang, S.G., Sheng, G.P., Shi, X.Y., Liu, X.W. and Yu, H.Q. (2010). Electricity generation from mixed volatile fatty acids using microbial fuel cells. Applied Microbiology and Biotechnology 87, 2365-2372. doi:10.1007/s00253-010-2746-5.

Valdez-Ojeda, R., Aguilar-Espinosa, M., Gomez-Roque, L., Canto-Canche, B., Gracia-Medrano, P.M.E., Dominguez-Maldonado, J. and Alzate-Gaviria, L. (2014). Genetic identification of the bioanode and biocathode of a microbial electrolysis cell. Revista Mexicana de Ingenieria Quimica 13, 573-581.

Wagner, R.C., Regan, J.M., Oh, S.E., Zuo, Y. and Logan, B. E. (2009). Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Research 43, 1480-1488. doi:10.1016/j.watres.2008.12.037.

Wu, T.T., Zhu, G.F., Jha, A.K., Zou, R., Liu, L., Huang, X. and Liu, C.X. (2013). Hydrogen production with effluent from an anaerobic baffled reactor (ABR) using a single-chamber microbial electrolysis cell (MEC). International Journal of Hydrogen Energy 38, 11117-11123. doi:10.1016/j.ijhydene.2013.03.029.

Xu, L., Liu, W., Wu, Y., Wang, A., Li, S. and Ji, W. (2013). Optimizing external voltage for enhanced energy recovery from sludge fermentation liquid in microbial electrolysis cell. International Journal of Hydrogen Energy 38, 15801-15806. doi:10.1016/j.ijhydene.2013.05.084.

Yang, N., Hafez, H. and Nakhla, G. (2015). Impact of volatile fatty acids on microbial electrolysis cell performance. Bioresource Technology 193, 449-455. doi:10.1016/j.biortech.2015.06.124.

Yuan, X. Z., Nayoze-Coynel, C., Shaigan, N., Fisher, D., Zhao, N.N., Zamel, N., Gazdzicki, P., Ulsh, M., Friedrich, K.A, Girard, F. and Groos, U. (2021). A review of functions, attributes, properties and measurements for the quality control of proton exchange membrane fuel cell components. Journal of Power Sources 491. doi:10.1016/j.jpowsour.2021.229540.

Zhang, Y. and Angeliclaki, I. (2012). Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors. Water Research 46, 2727-2736. doi:10.1016/j.watres.2012.02.038.

Published
2022-09-11
How to Cite
Cercado, B., Ruiz, V., & Buitrón, G. (2022). Efficiency parameters that effectively correspond with hydrogen production from VFAs in microbial electrolysis cells. Revista Mexicana De Ingeniería Química, 21(3), Bio2850. https://doi.org/10.24275/rmiq/Bio2850
Section
Biotechnology