Ethnopharmacological study of the genus Coffea and compounds of biological importance

  • J. Gallardo-Ignacio Universidad Autónoma Metropolitana
  • M.P. Nicasio-Torres Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social
  • A. Santibáñez Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social
  • S.L. Cabrera-Hilerio Benemérita Universidad Autónoma de Puebla
  • F. Cruz-Sosa Universidad Autónoma Metropolitana
Keywords: chlorogenic acid, anti-inflammatory, antidiabetic, coffee, caffeine, Coffea

Abstract

Coffee is native to Ethiopia and it was used originally as a food and fermented beverage in Arab countries due to its stimulating effect. The “Moka” infusion of green and/or roasted beans then became popular in Europe. The genus Coffea (Rubiaceae) comprises more than 100 species; the best known are C. arabica and C. canephora and their hybrids Colombia, Oro Azteca and Costa Rica 95, which are resistant to the rust fungus. The predominant commercial production (70%) is of C. arabica due to its cup quality, low caffeine content and fine aroma. C. canephora is mainly used as a base for instant coffee. The main consumers are the United States and countries in the European Union. As producers, Brazil and Vietnam stand out; Mexico is the tenth largest producer, with Chiapas being the major producer and Guerrero standing out for its production of organic and specialty coffee by indigenous communities. Coffee beans are rich in phenolic compounds such as chlorogenic acids (CGAs) and alkaloids such as caffeine and trigonelline, the contents of which are reduced after the beans are roasted. Trigonelline and CGAs confer aroma, bitterness and astringency to coffee. The main biological effects of CGAs are associated with its antioxidant, anti-inflammatory and antidiabetic properties, and as neurostimulating for caffeine.

Author Biographies

J. Gallardo-Ignacio, Universidad Autónoma Metropolitana

Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa

S.L. Cabrera-Hilerio, Benemérita Universidad Autónoma de Puebla

Laboratorio de Bromatología, Facultad de Ciencias Químicas

F. Cruz-Sosa, Universidad Autónoma Metropolitana

Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud

References

Alianza Estratégica para el Desarrollo Sustentable de la Región Pacífico Sur. (2020). Territorios Cafetaleros y Capital Natural. Available at: http://adesur.centrogeo.org.mx/cms/multimedia/cafe/menuSect-25-563. Accessed: March 15, 2022.

Al-Megrin, W. A., El-Khadragy, M. F., El-Khadragy, M. F., Hussein, M. H., Mahgoub, S., Abdel-Mohsen, D. M., Taha, H., Bakkar, A. A. A., Abdel Moneim, A. E., and Amin, H. K. (2020). Green Coffea arabica extract ameliorates testicular injury in high-fat Diet/Streptozotocin-Induced Diabetes in Rats. Journal of Diabetes Research, 2020. https://doi.org/10.1155/2020/6762709

Alvarado-Ambriz, S. G., Lobato-Calleros, C., Hernández-Rodríguez, L., and Vernon-Carter, E. J. (2020). Wet coffee processing waste as an alternative to produce extracts with antifungal activity: In vitro and in vivo valorization. Revista Mexicana de Ingeniería Química, 19(1), 135–149. https://doi.org/10.24275/rmiq/Bio1612

Anthony, F., Bertrand, B., Etienne, H., and Lashermes, P. (2011). Coffea and Psilanthus. In Wild Crop Relatives: Genomic and Breeding Resources (pp. 41–61). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21201-7_3

Awwad, S., Issa, R., Alnsour, L., Albals, D., and Al-Momani, I. (2021). Quantification of caffeine and chlorogenic acid in green and roasted coffee samples using HPLC-DAD and evaluation of the effect of degree of roasting on their levels. Molecules, 26(24). https://doi.org/10.3390/molecules26247502

Babova, O., Occhipinti, A., and Maffei, M. E. (2016). Chemical partitioning and antioxidant capacity of green coffee (Coffea arabica and Coffea canephora) of different geographical origin. Phytochemistry, 123, 33–39. https://doi.org/10.1016/j.phytochem.2016.01.016

Barrera, J. F. (2017). Insect pests of coffee and their management in nature-friendly production systems. In V. Vacante and S. Kreiter (Eds.), Handbook of Pest Management in Organic Farming (pp. 477–501). CABI.

Bhandarkar, N. S., Brown, L., and Panchal, S. K. (2019). Chlorogenic acid attenuates high-carbohydrate, high-fat diet–induced cardiovascular, liver, and metabolic changes in rats. Nutrition Research, 62, 78–88. https://doi.org/10.1016/j.nutres.2018.11.002

Bobadilla Landey, R. (2013). Influence of micropropagation through somatic embryogenesis on somaclonal variation in coffee (Coffea arabica): assessment of variations at the phenotypical, cytological, genetic and epigenetic level. Doctoral dissertation, Université Montpellier II-Sciences et Techniques du Languedoc.

Boonphang, O., Ontawong, A., Pasachan, T., Phatsara, M., Duangjai, A., Amornlerdpison, D., Jinakote, M., and Srimaroeng, C. (2021). Antidiabetic and renoprotective effects of Coffea arabica pulp aqueous extract through preserving organic cation transport system mediated oxidative stress pathway in experimental type 2 diabetic rats. Molecules, 26(7). https://doi.org/10.3390/molecules26071907

Budryn, G., Zakłos-Szyda, M., Zaczyńska, D., Żyżelewicz, D., Grzelczyk, J., Zduńczyk, Z., and Juśkiewicz, J. (2017). Green and roasted coffee extracts as antioxidants in βTC3 cells with induced oxidative stress and lipid accumulation inhibitors in 3T3L1 cells, and their bioactivity in rats fed high fat diet. European Food Research and Technology, 243(8), 1323–1334. https://doi.org/10.1007/s00217-017-2843-0

Caprioli, G., Cortese, M., Sagratini, G., and Vittori, S. (2015). The influence of different types of preparation (espresso and brew) on coffee aroma and main bioactive constituents. International Journal of Food Sciences and Nutrition, 66(5), 505–513. https://doi.org/10.3109/09637486.2015.1064871

Castaldo, L., Narváez, A., Izzo, L., Graziani, G., and Ritieni, A. (2020). In vitro bioaccessibility and antioxidant activity of coffee silverskin polyphenolic extract and characterization of bioactive compounds using UHPLC-Q-Orbitrap HRMS. Molecules, 25(9). https://doi.org/10.3390/molecules25092132

Centro de Estudios para el Desarrollo Rural y Sustentable y la Soberanía Alimentaria (CEDRSSA). (2018). El café en México diagnóstico y perspectiva. http://www.cedrssa.gob.mx/files/10/30El%20caf%C3%A9%20en%20M%C3%A9xico:%20diagn%C3%B3stico%20y%20perspectiva.pdf. Accessed: August 05, 2022.

Choi, S., Jung, S., and Ko, K. S. (2018). Effects of coffee extracts with different roasting degrees on antioxidant and anti-inflammatory systems in mice. Nutrients, 10(3). https://doi.org/10.3390/nu10030363

Clifford, M. N., and Willson, K. C. (1985). Coffee (M. N. Clifford and K. C. Willson, Eds.). Springer US. https://doi.org/10.1007/978-1-4615-6657-1

Contreras-Medina, D. I., Contreras-Medina, L. M., Pardo-Nuñez, J., Olvera-Vargas, L. A., and Rodriguez-Peralta, C. M. (2020). Road mapping as a driver for knowledge creation: A proposal for improving sustainable practices in the coffee supply chain from Chiapas, Mexico, using emerging technologies. Sustainability, 12(14). https://doi.org/10.3390/su12145817

Davis, A. P., Chester, Mi., Aurin, O., and Fay, M. F. (2007). Searching for the relatives of Coffea (Rubiaceae, Ixoroideae): the circumscription and phylogeny of Coffeeae based on plastid sequence data and morphology. American Journal of Botany, 94(3), 313–329. https://doi.org/10.3732/ajb.94.3.313

Davis, A. P., Gargiulo, R., Almeida, I. N. das M., Caravela, M. I., Denison, C., and Moat, J. (2021). Hot Coffee: The identity, climate profiles, agronomy, and beverage characteristics of Coffea racemosa and C. zanguebariae. Frontiers in Sustainable Food Systems, 5, 383. https://doi.org/10.3389/FSUFS.2021.740137/BIBTEX

Davis, A. P., Gargiulo, R., Fay, M. F., Sarmu, D., and Haggar, J. (2020). Lost and Found: Coffea stenophylla and C. affinis, the forgotten coffee crop species of West Africa. Frontiers in Plant Science, 1-18. https://doi.org/10.3389/FPLS.2020.00616/BIBTEX

de la Cruz, S., Iriondo-DeHond, A., Herrera, T., Lopez-Tofiño, Y., Galvez-Robleño, C., Prodanov, M., Velazquez-Escobar, F., Abalo, R., and Castillo, M. D. del. (2019). An assessment of the bioactivity of coffee silverskin melanoidins. Foods, 8(2), 68. https://doi.org/10.3390/foods8020068

Delgado-Alvarado, A. (2018). Sistema de producción de café (Coffea arabica L.) en la comunidad del Cerro Cuate, Iliatenco, Guerrero. Agro Productividad, 11(10), 157–163. https://doi.org/10.32854/AGROP.V11I10.1262

Duangjai, A., Saokaew, S., Goh, B. H., and Phisalprapa, P. (2021). Shifting of physicochemical and biological characteristics of coffee roasting under ultrasound-assisted extraction. Frontiers in Nutrition, 8, 1–8. https://doi.org/10.3389/fnut.2021.724591

Duangjai, A., Suphrom, N., Wungrath, J., Ontawong, A., Nuengchamnong, N., and Yosboonruang, A. (2016). Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative Medicine Research, 5(4), 324–331. https://doi.org/10.1016/j.imr.2016.09.001

Endeshaw, H., and Belay, A. (2020). Optimization of the roasting conditions to lower acrylamide content and improve the nutrient composition and antioxidant properties of Coffea arabica. PLOS ONE, 1-18. https://doi.org/10.1371/journal.pone.0237265

Farah, A., and Donangelo, C. M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18(1), 23–36. https://doi.org/10.1590/S1677-04202006000100003

Flores Vichi, F. (2015). La producción de café en México: ventana de oportunidad para el sector agrícola de Chiapas. Revista Espacio I+D Innovación Más Desarrollo, 4(7), 174–194. https://doi.org/10.31644/IMASD.7.2015.a07

Geremu, M., Tola, Y. B., and Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture, 3(1). https://doi.org/10.1186/s40538-016-0077-1

Godos, J., Pluchinotta, F. R., Marventano, S., Buscemi, S., Volti, G. L., Galvano, F., and Grosso, G. (2014). Coffee components and cardiovascular risk: Beneficial and detrimental effects. International Journal of Food Sciences and Nutrition 65(8), 925–936. https://doi.org/10.3109/09637486.2014.940287

Górecki, M., and Hallmann, E. (2020). The antioxidant content of coffee and its in vitro activity as an effect of its production method and roasting and brewing time. Antioxidants, 9(4). https://doi.org/10.3390/antiox9040308

Górnaś, P., Dwiecki, K., Siger, A., Tomaszewska-Gras, J., Michalak, M., and Polewski, K. (2016). Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. European Food Research and Technology, 242(5), 641–653. https://doi.org/10.1007/s00217-015-2572-1

Herrera, J. C., and Lambot, C. (2017). The Coffee Tree—Genetic Diversity and Origin. In The Craft and Science of Coffee (pp. 1–16). Elsevier. https://doi.org/10.1016/B978-0-12-803520-7.00001-3

Hidalgo-Espinosa, E. (2020). Coffee Origins: A Guide to Mexico-Perfect Daily Grind. Perfect Daily Grind. Available at: https://perfectdailygrind.com/2020/03/coffee-origins-a-guide-to-mexico/. Accessed: March 21, 2022.

Hu, G. L., Wang, X., Zhang, L., and Qiu, M. H. (2019). The sources and mechanisms of bioactive ingredients in coffee. In Food and Function (Vol. 10, Issue 6, pp. 3113–3126). Royal Society of Chemistry. https://doi.org/10.1039/c9fo00288j

Hutachok, N., Angkasith, P., Chumpun, C., Fucharoen, S., Mackie, I. J., Porter, J. B., and Srichairatanakool, S. (2020). Anti-Platelet Aggregation and Anti-Cyclooxygenase Activities for a Range of Coffee Extracts (Coffea arabica). Molecules, 26(1). https://doi.org/10.3390/molecules26010010

International Coffee Organization. (2021). Exports of all forms of coffee by exporting countries to all destinations January 2022. Available at: https://www.ico.org/prices/m1-exports.pdf. Accessed: May 15, 2022.

International Coffee Organization. (n.d.-a). Botanical aspects. Available at: https://www.ico.org/es/botanical_c.asp. Accessed: March 12, 2022.

International Coffee Organization. (n.d.-b). History of coffee. Available at: https://www.ico.org/ES/coffee_storyc.asp. Accessed: March 12, 2022

International Coffee Organization. (2021). Coffee Market Report. Available at: https://www.ico.org/documents/cy2021-22/cmr-1221-e.pdf. Accessed: March 29, 2022.

Jeszka-Skowron, M., Sentkowska, A., Pyrzyńska, K., and de Peña, M. P. (2016). Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. European Food Research and Technology, 242(8), 1403–1409. https://doi.org/10.1007/s00217-016-2643-y

Jung, S., Gu, S., Lee, S. H., and Jeong, Y. (2021). Effect of roasting degree on the antioxidant properties of espresso and drip coffee extracted from Coffea arabica cv. Java. Applied Sciences, 11(15). https://doi.org/10.3390/app11157025

Khochapong, W., Ketnawa, S., Ogawa, Y., and Punbusayakul, N. (2021). Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract. Food Chemistry, 348. https://doi.org/10.1016/j.foodchem.2021.129094

Król, K., Gantner, M., Tatarak, A., and Hallmann, E. (2020). The content of polyphenols in coffee beans as roasting, origin and storage effect. European Food Research and Technology, 246(1), 33–39. https://doi.org/10.1007/s00217-019-03388-9

Kwak, H. S., Jeong, Y., and Kim, M. (2018). Effect of yeast fermentation of green coffee beans on antioxidant activity and consumer acceptability. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/5967130

Lazcano-Sánchez, E., Trejo-Márquez, Ma. A., Vargas-Martinez, Ma. G., and Pascual-Bustamante, S. (2015). Contenido de fenoles, cafeína y capacidad antioxidante de granos de café verdes y tostados de diferentes estados de México. Revista Iberoamericana de Tecnología Postcosecha, 16(2), 293–298. https://www.redalyc.org/articulo.oa?id=81343176021

Li, X., Zhang, J., Lin, S., Xing, Y., Zhang, X., Ye, M., Chang, Y., Guo, H., and Sun, X. (2022). (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants. Plant Cell and Environment, 45(2), 496–511. https://doi.org/10.1111/pce.14216

Lim, T. K. (2013a). Coffea canephora. In edible medicinal and non-medicinal plants (pp. 680–709). Springer Netherlands. https://doi.org/10.1007/978-94-007-5653-3_33

Lim, T. K. (2013b). Coffea arabica. In edible medicinal and non-medicinal plants (Vol. 42, Issue 4, pp. 614–679). Springer Netherlands. https://doi.org/10.1007/978-94-007-5653-3_32

Ludwig, I. A., Mena, P., Calani, L., Cid, C., del Rio, D., Lean, M. E. J., and Crozier, A. (2014). Variations in caffeine and chlorogenic acid contents of coffees: What are we drinking? Food and Function, 5(8), 1718–1726. https://doi.org/10.1039/c4fo00290c

Mengistu, M. W., Workie, M. A., and Mohammed, A. S. (2020). Biochemical compounds of Arabica coffee (Coffea arabica L.) varieties grown in northwestern highlands of Ethiopia. Cogent Food and Agriculture, 6(1). https://doi.org/10.1080/23311932.2020.1741319

Mestdagh, F., Glabasnia, A., and Giuliano, P. (2017). The brew-extracting for excellence. The Craft and Science of Coffee, 355–380. https://doi.org/10.1016/B978-0-12-803520-7.00015-3

Muzykiewicz-Szymańska, A., Nowak, A., Wira, D., and Klimowicz, A. (2021). The effect of brewing process parameters on antioxidant activity and caffeine content in infusions of roasted and unroasted Arabica coffee beans originated from different countries. Molecules, 26(12). https://doi.org/10.3390/molecules26123681

Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., Ahmad, F., Babazadeh, D., Fang Fang, X., Modarresi-Ghazani, F., WenHua, L., and XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. In Biomedicine and Pharmacotherapy (Vol. 97, pp. 67–74). Elsevier Masson SAS. https://doi.org/10.1016/j.biopha.2017.10.064

Nemzer, B., Kalita, D., and Abshiru, N. (2021). Quantification of major bioactive constituents, antioxidant activity, and enzyme inhibitory effects of whole coffee cherries (Coffea arabica) and their extracts. Molecules, 26(14). https://doi.org/10.3390/molecules26144306

Ngamsuk, S., Huang, T. C., and Hsu, J. L. (2019). Determination of phenolic compounds, procyanidins, and antioxidant activity in processed Coffea arabica L. leaves. Foods, 8(9), 1–13. https://doi.org/10.3390/foods8090389

Nuhu, A. A. (2014). Bioactive micronutrients in coffee: recent analytical approaches for characterization and quantification. ISRN Nutrition, 2014, 1–13. https://doi.org/10.1155/2014/384230

Ontawong, A., Duangjai, A., Muanprasat, C., Pasachan, T., Pongchaidecha, A., Amornlerdpison, D., andSrimaroeng, C. (2019). Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine 52, 187–197. https://doi.org/10.1016/j.phymed.2018.06.021

Otero, A., and Elms, R. (2021). Coffee anual Mexico. Available at: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileNamefileName=Coffee%20Annual_Mexico%20City_Mexico_05-15-2021. Accessed: March 21, 2022.

Ozuna, C., Mulík, S., Valdez-Rodríguez, B., Abraham-Juárez, M. del R., and Fernández-López, C. L. (2020). The effect of organic farming on total phenols, total flavonoids, brown compounds and antioxidant activity of spent coffee grounds from Mexico. Biological Agriculture and Horticulture, 36(2), 107–118. https://doi.org/10.1080/01448765.2019.1704876

Peña-Maravilla, M., Calixto-Romo, M. A., Gullén-Navarro, K., Sánchez, J. E., and Amaya-Delgado, L. (2017). Cellulases and xylanases production by Penicillium citrinum CGETCR using coffee pulp in solid state fermentation. Revista Mexicana de Ingeniería Química, 16(3), 757–769. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/929

Prandi, B., Ferri, M., Monari, S., Zurlini, C., Cigognini, I., Verstringe, S., Schaller, D., Walter, M., Navarini, Philippe, L., Benoít, B., and Hervé, E. (2009). Breeding coffee (Coffea arabica) for sustainable production. In Breeding Plantation Tree Crops: Tropical Species (pp. 525–543). Springer New York. https://doi.org/10.1007/978-0-387-71201-7_14

Pietsch, A. (2017). Decaffeination-Process and Quality. In The Craft and Science of Coffee (pp. 225–143). Elsevier Inc. https://doi.org/10.1016/B978-0-12-803520-7.00010-4

Prandi, B., Ferri, M., Monari, S., Zurlini, C., Cigognini, I., Verstringe, S., Schaller, D., Walter, M., Navarini, L., Tassoni, A., Sforza, S., and Tedeschi, T. (2021). Extraction and chemical characterization of functional phenols and proteins from coffee (Coffea arabica) by-products. Biomolecules, 11(11), 1–17. https://doi.org/10.3390/biom11111571

Raharimalala, N., Rombauts, S., McCarthy, A., Garavito, A., Orozco-Arias, S., Bellanger, L., Morales-Correa, A. Y., Froger, S., Michaux, S., Berry, V., Metairon, S., Fournier, C., Lepelley, M., Mueller, L., Couturon, E., Hamon, P., Rakotomalala, J. J., Descombes, P., Guyot, R., and Crouzillat, D. (2021). The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87419-0

Reich, A. (2010). Coffee and tea history in a cup. The Herbarist, 8–15. https://edsp.uam.elogim.com/eds/pdfviewer/pdfviewer?vid=3&sid=24d6d9b1-6dab-40dc-8fd4-3a1c2c002fd7%40redis

Rizk, S., Taha, H., Abdel Moneim, A. E., and Amin, H. K. (2021). Neuroprotective effect of green and roasted coffee bean extracts on cerebral ischemia-induced injury in rats. Metabolic Brain Disease, 36(7), 1943–1956. https://doi.org/10.1007/s11011-021-00769-6

Ruiz-Palomino, P., Guatemala-Morales, G., Mondragón-Cortéz, P. M., Zúñiga-González, E. A., Corona-González, R. I., and Arriola-Guevara, E. (2019). Empirical model of the chlorogenic acid degradation kinetics during coffee roasting in a spouted bed. Revista Mexicana de Ingeniera Química, 18(2), 387–396. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Ruiz

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). (2017). Café mexicano. https://www.gob.mx/cms/uploads/attachment/file/256426/B_sico-Caf_.pdf. Accessed: August 05, 2022.

Sangta, J., Wongkaew, M., Tangpao, T., Withee, P., Haituk, S., Arjin, C., Sringarm, K., Hongsibsong, S., Sutan, K., Pusadee, T., Sommano, S. R., and Cheewangkoon, R. (2021). Recovery of polyphenolic fraction from Arabica coffee pulp and its antifungal applications. Plants, 10(7), 1–15. https://doi.org/10.3390/plants10071422

Sarriá, B., Martínez-López, S., Sierra-Cinos, J. L., García-Diz, L., Mateos, R., and Bravo-Clemente, L. (2018). Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. European Journal of Nutrition, 57(1), 269–278. https://doi.org/10.1007/s00394-016-1316-8

Secretaría de Agricultura y Desarrollo Rural. (2018). México, onceavo productor mundial de café. Available at: https://www.gob.mx/agricultura/es/articulos/mexico-onceavo-productor-mundial-de-cafe?idiom=es. Accessed: March 15, 2022.

Segheto, L., Santos, B. C. S., Werneck, A. F. L., Vilela, F. M. P., Sousa, O. V. de, and Rodarte, M. P. (2018). Antioxidant extracts of coffee leaves and its active ingredient 5-caffeoylquinic acid reduce chemically-induced inflammation in mice. Industrial Crops and Products, 126, 48–57. https://doi.org/10.1016/j.indcrop.2018.09.027

Servicio de Información Agroalimentaria y Pesquera. (2021). Cierre de la producción agrícola-Anuario Estadístico de la Producción Agrícola. Acciones y Programas. Available at: https://nube.siap.gob.mx/cierreagricola/ Accessed: March 13, 2022.

Silva, M. de O., Honfoga, J. N. B., Medeiros, L. L. de, Madruga, M. S., and Bezerra, T. K. A. (2020). Obtaining Bioactive Compounds from the Coffee Husk (Coffea arabica L.) Using Different Extraction Methods. Molecules, 26(1). https://doi.org/10.3390/molecules26010046

Smith, R. F. (1985). A History of Coffee. In: Coffee, 1–12. https://doi.org/10.1007/978-1-4615-6657-1_1

Souza, L. dos S. de, Carrero Horta, I. P., de Souza Rosa, L., Barbosa Lima, L. G., Santos da Rosa, J., Montenegro, J., da Silva Santos, L., Nana de Castro, R. B., Freitas-Silva, O., and Teodoro, A. J. (2020). Effect of the roasting levels of Coffea arabica L. extracts on their potential antioxidant capacity and antiproliferative activity in human prostate cancer cells. RSC Advances, 10(50), 30115–30126. https://doi.org/10.1039/D0RA01179G

Stanek, N., Zarębska, M., Biłos, Ł., Barabosz, K., Nowakowska-Bogdan, E., Semeniuk, I., Błaszkiewicz, J., Kulesza, R., Matejuk, R., and Szkutnik, K. (2021). Influence of coffee brewing methods on the chromatographic and spectroscopic profiles, antioxidant and sensory properties. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-01001-2

Stefanello, N., Spanevello, R. M., Passamonti, S., Porciúncula, L., Bonan, C. D., Olabiyi, A. A., Teixeira da Rocha, J. B., Assmann, C. E., Morsch, V. M., and Schetinger, M. R. C. (2019). Coffee, caffeine, chlorogenic acid, and the purinergic system. Food and Chemical Toxicology, 123, 298–313. https://doi.org/10.1016/j.fct.2018.10.005

Tablas González, I., Guerrero Rodríguez, J. de D., Aceves Ruiz, E., Álvarez Calderón, N. M., Loyo, E. L., and Olvera Hernández, J. I. (2021). El cultivo de café en Ojo de Agua de Cuauhtémoc, Malinaltepec, Guerrero. Revista Mexicana de Ciencias Agrícolas, 12(6), 1031–1042. https://doi.org/10.29312/REMEXCA.V12I6.2736

Trujillo-Carretero, C., González-Ríos, O., Figueroa-Hernández, C. Y., and Suárez-Quiroz, M. L. (2021). Effect of modified atmospheres storage on physicochemical and biological parameters of Arabica Mexican green coffee. Revista Mexicana de Ingeniería Química, 21(1), 1–22. https://doi.org/10.24275/rmiq/Alim2620

United States Department Agriculture. (2021). Coffee: World Markets and Trade. Available at: https://public.govdelivery.com/accounts/USDAFAS/subscriber/new. Accessed: March 12, 2022.

Várady, M., Ślusarczyk, S., Boržíkova, J., Hanková, K., Vieriková, M., Marcinčák, S., and Popelka, P. (2021). Heavy-metal contents and the impact of roasting on polyphenols, caffeine, and acrylamide in specialty coffee beans. Foods, 10(6). https://doi.org/10.3390/foods10061310

Vázquez-Sánchez, K., Martinez-Saez, N., Rebollo-Hernanz, M., del Castillo, M. D., Gaytán-Martínez, M., and Campos-Vega, R. (2018). In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds. Food Chemistry, 261, 253–259. https://doi.org/10.1016/j.foodchem.2018.04.064

Published
2022-10-04
How to Cite
Gallardo-Ignacio, J., Nicasio-Torres, M., Santibáñez, A., Cabrera-Hilerio, S., & Cruz-Sosa, F. (2022). Ethnopharmacological study of the genus Coffea and compounds of biological importance. Revista Mexicana De Ingeniería Química, 21(3), Bio2856. https://doi.org/10.24275/rmiq/Bio2856
Section
Biotechnology