Heat stress on Fomes culture reduces proteases and improves laccases thermostability

Keywords: Fomes, laccase, protease, thermostability

Abstract

The aim of this work was to study the production of laccase and protease by Fomes sp. EUM1 under heat stress when a temperature shift from 35 to 45°C was applied. The highest values of laccase activity were similar and obtained after the temperature shift, 76 and 81.6 U/gids at 35 and 45 °C respectively.  For protease activity, at 35°C the peak activity (6.4 U/gids) was obtained at day 7 and maintained until the end of the culture and at 45°C the peak activity (4.3 U/gids) was obtained when the temperature shift was realized (day 6) and decreased until the end of the culture. In the zymogram of laccase activity one band with a molecular weight of 45 kDa was observed with extracts from both temperatures evaluated with slight differences in molecular weight and intensity of the bands at the various days assessed. The thermostability of laccase and protease activities from the enzymatic crude extracts, at the highest temperature assessed (60°C) for laccase activity the inactivation constant was 0.324 h–1 and 0.277 h–1 from cultures at 35 and 45 °C, respectively.

References

Ado, B. V. (2019). Optimization of total soluble protein production by Trametes sp. Isolate B7 and enzymatic degradation of synthetic dyes. Journal of Microbiology, Biotechnology and Food Sciences 9, 99–103. https://doi.org/10.15414/jmbfs.2019.9.1.99-103

Atalah, J., Cáceres-Moreno, P., Espina, G., & Blamey, J. M. (2019). Thermophiles and the applications of their enzymes as new biocatalysts. Bioresource technology 280, 478-488. https://doi.org/10.1016/j.biortech.2019.02.008

Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera de Los Santos, M., & Valdez-Cruz, N. A. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial Cell Factories 18(1), 1-33. https://doi.org/10.1186/s12934-019-1248-0

Bertrand, B., Martínez-Morales, F., & Trejo-Hernández, M. R. (2013). Fungal laccases: induction and production. Revista Mexicana de Ingeniería Química 12(3), 473-488. https://www.redalyc.org/pdf/620/62029966010.pdf

Bourbonnais, R., Paice, M. G., Freiermuth, B., Bodie, E., & Borneman, S. (1997). Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Applied and Environmental Microbiology 63, 4627–4632. https://doi.org/10.1128/aem.63.12.4627-4632.1997

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Carrillo-Sancen, G., Carrasco-Navarro, U., Tomasini-Campocosio, A., Corzo, G., Pedraza-Escalona, M. M., & Favela-Torres, E. (2016). Effect of glucose as a carbon repressor on the extracellular proteome of Aspergillus niger during the production of amylases by solid state cultivation. Process Biochemistry 51(12), 2001-2010. https://doi.org/10.1016/j.procbio.2016.09.001

Chatterjee, B. K., Puri, S., Sharma, A., Pastor, A., & Chaudhuri, T. K. (2018). Molecular chaperones: structure-function relationship and their role in protein folding. In: Asea, A., Kaur, P. (eds) Regulation of Heat Shock Protein Responses, Heat Shock Proteins. pp. 181–218. Springer International Publishing. Cham.

https://doi.org/10.1007/978-3-319-74715-6_8

Da Alves-Silva, E., Demarchi Mendes, T., Fraga Pacheco, T., Wischral, D., Dos Santos, D. C., Mendonça, S., Camassola, M., Gonçalves de Siqueira, F., & Souza-Junior, M.T. (2022). Colonization of oil palm empty fruit bunches by basidiomycetes from the Brazilian cerrado: Enzyme production. Energy Science & Engineering 10, 1189-1201. https://doi.org/10.1002/ese3.1093

Díaz, R., Téllez-Téllez, M., Sánchez, C., Bibbins-Martínez, M. D., Díaz-Godínez, G., & Soriano-Santos, J. (2013). Influence of initial pH of the growing medium on the activity, production and genes expression profiles of laccase of Pleurotus ostreatus in submerged fermentations. Electronic Journal of Biotechnology, North America 16(4). https://doi.org/10.2225/vol16-issue4-fulltext-6

Díaz-Godínez, G., Soriano-Santos, J., Augur, C., & Viniegra-González, G. (2001). Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study. Journal of Industrial Microbiology and Biotechnology 26, 271–275. https://doi.org/10.1038/sj.jim.7000113

Ding, Z., Peng, L., Chen, Y., Zhang, L., Shi, G., & Zhang, K. (2012). Production and characterization of thermostable laccase from the mushroom, Ganoderma lucidum, using submerged fermentation. African Journal of Microbiology Research 6(6), 1147-1157. https://doi.org/10.5897/AJMR11.1257

Elisashvili, V., & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. Journal of Biotechnology 144, 37–42. https://doi.org/10.1016/j.jbiotec.2009.06.020

España-Gamboa, E., Chablé-Villacis, R., Alzate-Gaviria, L., Dominguez-Maldonado, J., Leal-Bautista, R. M., Soberanis-Monforte, G., & Tapia-Tussell, R. (2021). Native fungal strains from Yucatan, an option for treatment of biomethanated vinasse. Revista Mexicana de Ingeniería Química 20(2), 607-620. https://doi.org/10.24275/rmiq/IA2063

Fields, P. A., Dong, Y., Meng, X., & Somero, G. N. (2015). Adaptations of protein structure and function to temperature: there is more than one way to “skin a cat.” Journal of Experimental Biology 218, 1801–1811. https://doi.org/10.1242/jeb.114298

Gokhale, D., Khisti, U., & Bastawde, K. (2011). Hyper-production of βeta-glucosidase and βeta-xylosidase by Aspergillus Niger NCIM 1207 in xylan containing media. BioResources 6, 2066–2076. https://doi.org/10.15376/biores.6.2.2066-2076

Haibo, Z., Yinglong, Z., Feng, H., Peiji, G., & Jiachuan, C. (2009). Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta. Biotechnology Letters 31, 837–843. https://doi.org/10.1007/s10529-009-9945-0

Harkin, J. M., & Obst, J. R. (1973). Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi. Experientia 29, 381–387. https://doi.org/10.1007/BF01926734

Hildén, K., Hakala, T. K., & Lundell, T. (2009). Thermotolerant and thermostable laccases. Biotechnology Letters 31, 1117–1128. https://doi.org/10.1007/s10529-009-9998-0

Ianutsevich, E. A., Danilova, O. A., Groza, N. V., Kotlova E. R., & Tereshina, V. M. (2016). Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures. Microbiology 162, 989–999. https://doi.org/10.1099/mic.0.000279

Ichikawa, K., Shiono, Y., Shintani, T., Watanabe, A., Kanzaki, H., Gomi, K., & Koseki, T. (2020). Efficient production of recombinant tannase in Aspergillus oryzae using an improved glucoamylase gene promoter. Journal of Bioscience and Bioengineering 129,150–154. https://doi.org/10.1016/j.jbiosc.2019.08.002

Jaszek, M., Grzywnowicz, K., Malarczyk, E., & Leonowicz, A. (2006). Enhanced extracellular laccase activity as a part of the response system of white rot fungi: Trametes versicolor and Abortiporus biennis to paraquat-caused oxidative stress conditions. Pesticide Biochemistry and Physiology 85, 147–154. https://doi.org/10.1016/j.pestbp.2006.01.002

Junior, J. A., Vieira, Y. A., Cruz, I. A., da Silva Vilar, D., Aguiar, M. M., Torres, N. H., ... & Ferreira, L. F. R. (2020). Sequential degradation of raw vinasse by a laccase enzyme producing fungus Pleurotus sajor-caju and its ATPS purification. Biotechnology reports 25, e00411.

https://doi.org/10.1016/j.btre.2019.e00411

Konings, W. N. (2006). Microbial transport: adaptations to natural environments. Antonie Van Leeuwenhoek 90(4), 325-342. https://doi.org/10.1007/s10482-006-9089-3

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0

Lee, K. K., Yu, S. R., & Liu, P. C. (1997). Alkaline serine protease is an exotoxin of Vibrio alginolyticus in Kuruma Prawn, Penaeus japonicus. Current Microbiology 34,110–117. https://doi.org/10.1007/s002849900153

Leonowicz, A., & Grzywnowicz, K. (1981). Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme and Microbial Technology 3, 55–58. https://doi.org/10.1016/0141-0229(81)90036-3

Lim, H. J., Kim, B. M., Hwang, I. J., Lee, J. S., Choi, I. Y., Kim, Y. J., & Rhee, J. S. (2016). Thermal stress induces a distinct transcriptome profile in the Pacific oyster Crassostrea gigas. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 19, 62–70. https://doi.org/10.1016/j.cbd.2016.06.006

Liu, Y., Luo, G., Ngo, H. H., Guo, W., & Zhang, S. (2020). Advances in thermostable laccase and its current application in lignin-first biorefinery: A review. Bioresource Technology 298, 122511. https://doi.org/10.1016/j.biortech.2019.122511

Mani, P., Keshavarz, T., Chandra, T. S., & Kyazze, G. (2017). Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: Influence of mitigating pH changes in the cathode chamber. Enzyme and Microbial Technology 96, 170–176. https://doi.org/10.1016/j.enzmictec.2016.10.012

Martínez-Moreno, F., Jofre y Garfias, A. E., Hernandez-Orihuela, A. L., & Martínez-Antonio, A. (2021). Avocado seed hydrolysate as an alternative growth medium for fungi. Revista Mexicana de Ingeniería Química 20(2), 569-580. https://doi.org/10.24275/rmiq/Bio1951

Mayolo-Deloisa, K., González-González, M., & Rito-Palomares, M. (2020). Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengineering and Biotechnology 8, 222. https://doi.org/10.3389/fbioe.2020.00222

Merino, A., Eibes, G., & Hormaza, A. (2019). Effect of copper and different carbon and nitrogen sources on the decolorization of an industrial dye mixture under solid-state fermentation. Journal of Cleaner Production 237, 117713. https://doi.org/10.1016/j.jclepro.2019.117713

Merlino, A., Krauss, I. R., Castellano, I., De Vendittis, E., Rossi, B., Conte, M., Vergara, A., & Sica, F. (2010). Structure and flexibility in cold-adapted iron superoxide dismutases: the case of the enzyme isolated from Pseudoalteromonas haloplanktis. Journal of Structural Biology 172, 343–352. https://doi.org/10.1016/j.jsb.2010.08.008

Montalvo, G., Téllez-Téllez, M., Díaz, R., Sánchez, C., & Díaz-Godínez, G. (2020). Isoenzymes and activity of laccases produced by Pleurotus ostreatus grown at different temperatures. Revista Mexicana de Ingeniería Química 19(1), 345-354. https://doi.org/10.24275/rmiq/Bio570

Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). “Blue” laccases. Biochemistry Moscow 72, 1136–1150. https://doi.org/10.1134/S0006297907100112

Neifar, M., Jaouani, A., Ellouze-Ghorbel, R., & Ellouze-Chaabouni, S. (2010). Purification, characterization and decolourization ability of Fomes fomentarius laccase produced in solid medium. Journal of Molecular Catalysis B: Enzymatic 64 ,68–74. https://doi.org/10.1016/j.molcatb.2010.02.004

Novoa, C., Dhoke, G. V., Mate, D. M., Martínez, R., Haarmann, T., Schreiter, M., Eidner, J., Schwerdtfeger, R., Lorenz, P., Davari, M. D., Jakob, F., & Schwaneberg, U. (2019). Knowvolution of a fungal laccase toward alkaline pH. European journal of chemical biology 20, 1458–1466. https://doi.org/10.1002/cbic.201800807

Ordaz, A., Favela, E., Meneses, M., Mendoza, G., & Loera, O. (2012). Hyphal morphology modification in thermal adaptation by the white-rot fungus Fomes sp. EUM1. Journal of Basic Microbiology 52, 167–174. https://doi.org/10.1002/jobm.201000528

Ordaz-Hernández, A., Ortega-Sánchez, E., Montesinos-Matías, R., Hernández-Martínez, R., Torres-Martínez, D., & Loera, O. (2016). Morphological and enzymatic response of the thermotolerant fungus Fomes sp. EUM1 in solid state fermentation under thermal stress. FEMS Microbiology Letters 363(16). https://doi.org/10.1093/femsle/fnw177

Papinutti, V., Diorio, L., & Forchiassin, F. (2003). Degradación de madera de álamo por Fomes sclerodermeus: producción de enzimas ligninolíticas en aserrín de álamo y cedro. Revista Iberoamericana de Micología 20(1), 16-20.

Papinutti, L., Mouso, N., & Forchiassin, F. (2006). Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran–Fomes sclerodermeus. Enzyme and microbial technology 39(4), 848-853. https://doi.org/10.1016/j.enzmictec.2006.01.013

Papinutti, L., Dimitriu, P., & Forchiassin, F. (2008). Stabilization studies of Fomes sclerodermeus laccases. Bioresource Technology 99, 419–424. https://doi.org/10.1016/j.biortech.2006.11.061

Parsell, D. A., & Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annual review of genetics 27, 437-497. https://doi.org/10.1146/annurev.ge.27.120193.002253

Pedneault, K., Angers, P., Avis, T. J., Gosselin, A., & Tweddell, R. J. (2007). Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var. ‘citrino-pileatus’ grown at different temperatures. Mycological Research 111, 1228–1234. https://doi.org/10.1016/j.mycres.2007.06.014

Pelaez, R. D. R., Oliveira, M. E. C., Miller, R. N. G., de Almeida, J. R. M., & de Siqueira, F. G. (2022). Biotechnological valorization of lignocellulosic residues from the oil palm industry: status and perspectives. Biomass Conversion and Biorefinery, 1-23. https://doi.org/10.1007/s13399-022-02637-4

Rai, R., Bibra, M., Chadha, B. S., & Sani, R. K. (2019). Enhanced hydrolysis of lignocellulosic biomass with doping of a highly thermostable recombinant laccase. International journal of biological macromolecules 137, 232-237. https://doi.org/10.1016/j.ijbiomac.2019.06.221

Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: life on the verge of death. Molecular Cell 40, 253–266. https://doi.org/10.1016/j.molcel.2010.10.006

Songulashvili, G., Elisashvili, V., Wasser, S., Nevo, E., & Hadar, Y. (2006). Laccase and manganese peroxidase activities of Phellinus robustus and Ganoderma adspersum grown on food industry wastes in submerged fermentation. Biotechnology Letters 28, 1425–1429. https://doi.org/10.1007/s10529-006-9109-4

Spiess, C., Beil, A., & Ehrmann, M. (1999). A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347. https://doi.org/10.1016/S0092-8674(00)80743-6

Téllez-Téllez, M., Sánchez, C., Loera, O., & Díaz-Godínez, G. (2005). Differential patterns of constitutive intracellular laccases of the vegetative phase of Pleurotus species. Biotechnology Letters 27, 1391-1394. https://doi.org/10.1007/s10529-005-3687-4

Timr, S., Madern, D., & Sterpone, F. (2020). Protein thermal stability, in: Progress in Molecular Biology and Translational Science (B. Strodel and B. Barz, Eds). pp. 239–272. Elsevier. https://doi.org/10.1016/bs.pmbts.2019.12.007

Torres‐Salas, P., Mate, D. M., Ghazi, I., Plou, F. J., Ballesteros, A. O., & Alcalde, M. (2013). Widening the pH activity profile of a fungal laccase by directed evolution. European Journal of Chemical Biology 14(8), 934-937.

https://doi.org/10.1002/cbic.201300102

Větrovský, T., Baldrian, P., & Gabriel, J. (2013). Extracellular enzymes of the white-rot fungus Fomes fomentarius and purification of 1, 4-β-glucosidase. Applied biochemistry and biotechnology 169(1), 100-109. https://doi.org/10.1007/s12010-012-9952-9

Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews 65, 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001

Vršanská, M., Voběrková, S., Jiménez Jiménez, A., Strmiska, V., & Adam, V. (2017). Preparation and optimisation of cross-linked enzyme aggregates using native isolate white rot fungi Trametes versicolor and Fomes fomentarius for the decolourisation of synthetic dyes. International Journal of Environmental Research and Public Health 15, 23. https://doi.org/10.3390/ijerph15010023

Walker, G. M., & White, N. A. (2017). Introduction to fungal physiology, in: Fungi (K. Kavanagh, Ed.), pp. 1–35, John Wiley & Sons.Hoboken. https://doi.org/10.1002/9781119374312.ch1

Wang, H., & Zhao, C. L. (2021). Fomes (Polyporales, Basidiomycota): medicinal, economic and ecological importance. Fungal Biology 1(2), 1-9. https://doi.org/10.5943/FunBiotec/1/2/1

Yan, J., Chen, Y., Niu, J., Chen, D., & Chagan, I. (2015) Laccase produced by a thermotolerant strain of Trametes trogii LK13. Brazilian Journal of Microbiology 46, 59–65. https://doi.org/10.1590/S1517-838246120130895

Yang, X., Wu, Y., Zhang, Y., Yang, E., Qu, Y., Xu, H., ... & Yan, J. (2020). A thermo-active laccase isoenzyme from Trametes trogii and its potential for dye decolorization at high temperature. Frontiers in microbiology 11, 241. https://doi.org/10.3389/fmicb.2020.00241

Yano, J. K., & Poulos, T. L. (2003). New understandings of thermostable and peizostable enzymes. Current Opinion in Biotechnology 14, 360–365. https://doi.org/10.1016/S0958-1669(03)00075-2

Zheng, F., An, Q., Meng, G., Wu, X. J., Dai, Y. C., Si, J., & Cui, B. K. (2017). A novel laccase from white rot fungus Trametes orientalis: Purification, characterization, and application. International journal of biological macromolecules 102, 758-770. https://doi.org/10.1016/j.ijbiomac.2017.04.089

Published
2022-09-13
How to Cite
Martínez-Valdez, F., Carrillo-Sancén, G., & Loera, O. (2022). Heat stress on Fomes culture reduces proteases and improves laccases thermostability. Revista Mexicana De Ingeniería Química, 21(3), Bio2860. https://doi.org/10.24275/rmiq/Bio2860
Section
Biotechnology