Influence of initial copper concentration, pH, and cross-linked alginate-chitosan and alginate-chitosan-Aspergillus australensis composite beads on the adsorption capacity and removal efficiency of copper ions

Keywords: copper, chitosan, alginate, cross-linked composite beads, adsorption

Abstract

Copper (Cu) is a toxic heavy metal whose concentration must be reduced to values under the environmental standard before discharges can be released into the environment. Due to its characteristics, using different adsorbents for biosorption is a convenient method for removing heavy metals. Alginate and chitosan are biopolymers that have shown high potential as adsorbents. This investigation discusses the influence of pH, initial concentration of copper (Co), and the type of immobilized bead in the adsorption capacity and removal efficiency of copper from synthetic solutions. FT-IR analysis showed cross-linked composite beads of alginate-chitosan (ICB) and alginate-chitosan-Aspergillus australensis (IBB) possess different functional groups. The analysis made with the kinetic models showed that the adsorption mechanism was governed by diffusion through interface and chemical adsorption. Adsorption capacity depends on pH and Co. Maximum average adsorption capacity was 4.46 mg/g at 600 mg/L and pH 4.5 for ICB. Statistical analysis demonstrated that Co, pH, and their interactions significantly affect removal efficiency. Besides, the highest removal efficiency was 36.18% ± 1.87 at pH 4.5, 150 mg/L for IBB. These biomaterials could be a potential adsorbent for removing copper from wastewater.

References

Ahirrao, S. P., Gide, P. S., Shrivastav, B., & Sharma, P. (2013). Ionotropic Gelation: A Promising Cross Linking Technique for Hydrogels. Research and Reviews: Journal of Pharmaceutical and Nanotechnology, 2(1), 1–6.

Alavi, J., & Ansari, S. (2022). Kinetic models evaluation for chemical organic matter removal prediction in a full-scale primary facultative pond treating municipal wastewater. Water Science and Technology, 00(0), 1–16. https://doi.org/10.2166/wst.2022.074

Alcázar-Medina, F. A., Núñez-Núñez, C. M., Villanueva-Fierro, I., Antileo, C., & Proal-Nájera, J. B. (2020). Removal of heavy metals present in groundwater from a northern Mexico mining community using Agave tequilana Weber extracts. Revista Mexicana de Ingeniería Química, 19(3), 1187–1199. https://doi.org/10.24275/rmiq/Bio1047

An, B., Son, H., Chung, J., Choi, J. W., Lee, S. H., & Hong, S. W. (2013). Calcium and hydrogen effects during sorption of copper onto an alginate-based ion exchanger: Batch and fixed-bed column studies. Chemical Engineering Journal, 232, 51–58. https://doi.org/10.1016/j.cej.2013.07.079

Asencios, Y. J. O., Parreira, L. M., Perpetuo, E, A., & Rotta, A. L. (2022). Characterization of seaweeds collected from Baixada Santista litoral, and their potential uses as biosorbents of heavy metal cations. Revista Mexicana de Ingeniería Química, 21(1), 1–22. https://doi.org/10.24275/rmiq/IA2600

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(94), 1–16. https://doi.org/10.3390/ijerph14010094

Bayón Sanz, S. (2015). Aplicación de la fitorremediación a suelos contaminados por metales pesados. Tesis de Licenciatura en Edafología, Universidad Complutense, España.

Bennett, R. M., Cordero, P. R. F., Bautista, G. S., & Dedeles, G. R. (2013). Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chemistry and Ecology, 29(4), 320–328. https://doi.org/10.1080/02757540.2013.770478

Block, W. (2003). Water status and thermal analysis of alginate beads used in cryopreservation of plant germplasm. Cryobiology, 47(1), 59–72. https://doi.org/10.1016/S0011-2240(03)00069-5

Cañizares-Villanueva, R. O. (2000). Biosorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana de Microbiologia, 42(3), 131–143. https://doi.org/10.1016/j.procbio.2004.02.024

Cervantes Macedo, A. H. (2014). Caracterización del drenaje ácido y de las rocas asociadas a una mina para evaluar su posible aplicación en un sistema de tratamiento pasivo. Tesis de Licenciatura en ingeniería de Minas y Metalurgista, Universidad Nacional Autónoma de México, México.

Contreras-Cortés, A. G., Almendariz-Tapia, F. J., Cortez-Rocha, M. O., Burgos-Hernández, A., Rosas-Burgos, E. C., Rodríguez-Félix, F., Gómez-Álvarez, A., Quevedo-López, M. Á., & Plascencia-Jatomea, M. (2020). Biosorption of copper by immobilized biomass of Aspergillus australensis. Effect of metal on the viability, cellular components, polyhydroxyalkanoates production, and oxidative stress. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-07747-y

Contreras-Cortés, A. G., Almendariz-Tapia, F. J., Gómez-Álvarez, A., Burgos-Hernández, A., Luque-Alcaraz, A. G., Rodríguez-Félix, F., Quevedo-López, M. Á., & Plascencia-Jatomea, M. (2019). Toxicological assessment of cross-linked beads of chitosan-alginate and Aspergillus australensis biomass, with efficiency as biosorbent for copper removal. Polymers, 11(222), 1–17. https://doi.org/10.3390/polym11020222

Contreras Cortés, A. G. (2019). Uso de Biocompositos de Quitosano, Alginato y Biomasa de Aspergillus australensis con Aplicación Potencial para Bioeliminar Cobre en Aguas de Uso Agrícola. Universidad de Sonora.

Dhankhar, R., & Hooda, A. (2011). Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467–491. https://doi.org/10.1080/09593330.2011.572922

Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36. https://doi.org/10.1016/j.ejbt.2016.07.003

Dziwulska, U., Bajguz, A., & Godlewska‐Żyłkiewicz, B. (2004). The Use of Algae Chlorella vulgaris Immobilized on Cellex‐T Support for Separation/Preconcentration of Trace Amounts of Platinum and Palladium before GFAAS Determination. Analytical Letters, 37(10), 2189–2203. https://doi.org/10.1081/AL-200026696

Emenike, E. C., Adeniyi, A. G., Omuku, P. E., Okwu, K. C., & Iwuozor, K. O. (2022). Recent advances in nano-adsorbents for the sequestration of copper from water. Journal of Water Process Engineering, 47, 102715. https://doi.org/10.1016/j.jwpe.2022.102715

Ferreira, S. A., Mota, A. A., Oliveira, M. A., Rodrigues, I. L. F., Pacífico, N. S., da Silva, E. J., Abagaro, T. O. B., Saraiva, D. G., de Castro, J. R. A., Teixeira, N. P. R., & Sousa Neto, O. V. (2019). Equilibrium and Kinetic Modelling of Adsorption: Evaluating the Performance of an Adsorbent in Softening Water for Irrigation and Animal Consumption. Revista Virtual de Química, 11(6), 1752–1766. https://doi.org/10.21577/1984-6835.20190123

Fotsing, P. N., Woumfo, E. D., Măicăneanu, S. A., Vieillard, J., Tcheka, C., Ngueagni, P. T., & Siéwé, J. M. (2020). Removal of Cu(II) from aqueous solution using a composite made from cocoa cortex and sodium alginate. Environmental Science and Pollution Research, 27(8), 8451–8466. https://doi.org/10.1007/s11356-019-07206-3

García-González, R., Gómez-Espinosa, R. M., Ávila-Pérez, P., Garcia-Gaitán, B., García-Rivas, J. L., & Zavala-Arce, R. E. (2016). Estudio de biosorción de Cu2+ en el criogel quitosano-celulosa. Revista Mexicana de Ingeniería Química, 15(2), 311–322.

García Hernández, M. de L. Á. (2017). Obtención de cepas fúngicas metalófilas autóctonas de México para su aplicación en tecnologías sustentables. Tesis de Doctorado en Ciencias con especialidad en Microbiología Aplicada, Universidad Autónoma de Nuevo León, México.

Guo, H., Zhang, X., Song, J., Li, H., & Zou, W. (2022). Green sulfidated iron oxide nanocomposites for efficient removal of Malachite Green and Rhodamine B from aqueous solution. Water Science and Technology, 85(4), 1202–1217. https://doi.org/10.2166/wst.2022.029

Ibitoye, E. B., Lokman, I. H., Hezmee, M. N. M., Goh, Y. M., Zuki, A. B. Z., & Jimoh, A. A. (2018). Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials, 13(2), 1–12. https://doi.org/10.1088/1748-605X/aa9dde

Khademian, E., Salehi, E., Sanaeepur, H., Galiano, F., & Figoli, A. (2020). A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-part A: Classification and modification strategies. Science of The Total Environment, 738, 139829. https://doi.org/10.1016/j.scitotenv.2020.139829

Kuczajowska-Zadrożna, M., Filipkowska, U., & Jóźwiak, T. (2020). Adsorption of Cu (II) and Cd (II) from aqueous solutions by chitosan immobilized in alginate beads. Journal of Environmental Chemical Engineering, 8(4), 1–7. https://doi.org/10.1016/j.jece.2020.103878

Kumararaja, P., Manjaiah, K. M., Datta, S. C., Ahammed Shabeer, T. P., & Sarkar, B. (2018). Chitosan-g-poly(acrylic acid)-bentonite composite: a potential immobilizing agent of heavy metals in soil. Cellulose, 25, 3985–3999. https://doi.org/10.1007/s10570-018-1828-x

Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., & Grøndahl, L. (2007). Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules, 8(8), 2533–2541. https://doi.org/10.1021/bm070014y

Liu, X., Jiang, Y., He, D., Fang, X., Xu, J., Lee, Y. W., Keller, N. P., & Shi, J. (2020). Copper Tolerance Mediated by FgAceA and FgCrpA in Fusarium graminearum. Frontiers in Microbiology, 11(June), 1–12. https://doi.org/10.3389/fmicb.2020.01392

Liu, Y., Liao, T., He, Z., Li, T., Wang, H., Hu, X., Guo, Y., & He, Y. (2013). Biosorption of copper(II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads. Transactions of Nonferrous Metals Society of China, 23(6), 1804–1814. https://doi.org/10.1016/S1003-6326(13)62664-3

Londoño Franco, L. F., Londoño Muñoz, P. T., & Muñoz Garcia, F. G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnología en el Sector Agropecuario y Agroindustrial, 14(2), 145–153. https://doi.org/10.18684/BSAA(14)145-153

McCuen, R. H., Knight, Z., & Cutter, A. G. (2006). Evaluation of the Nash–Sutcliffe Efficiency Index. Journal of Hydrologic Engineering, 11(6), 597–602. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)

Mokale, V., Jitendra, N., Yogesh, S., & Gokul, K. (2014). Chitosan reinforced alginate controlled release beads of losartan potassium: Design, formulation and in vitro evaluation. Journal of Pharmaceutical Investigation, 44(4), 243–252. https://doi.org/10.1007/s40005-014-0122-7

Nastaj, J., Przewłocka, A., & Rajkowska-Myśliwiec, M. (2016). Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: equilibrium, kinetic and mechanism studies. Polish Journal of Chemical Technology, 18(3), 81–87. https://doi.org/10.1515/pjct-2016-0052

National Institutes of Health. (2019). Cobre. https://ods.od.nih.gov/factsheets/Copper-DatosEnEspanol/

Nouha, K., Kumar, R. S., & Tyagi, R. D. (2016). Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresource Technology, 212, 120–129. https://doi.org/10.1016/j.biortech.2016.04.021

Nurak, G., Siripor, A., Morales Futulan, C., Tsai, W.-C., Kan, C.-C., & Wan, M.-W. (2012). The Study of Copper Adsorption from Aqueous Solution Using Crosslinked Chitosan Immobilized on Bentonite. Journal of Applied Polymer Science, 000(5), 2–11. https://doi.org/10.1002/app

Papageorgiou, S. K., Kouvelos, E. P., Favvas, E. P., Sapalidis, A. A., Romanos, G. E., & Katsaros, F. K. (2010). Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydrate Research, 345(4), 469–473. https://doi.org/10.1016/j.carres.2009.12.010

Parameswari, E., Ilakiya, T., Davamani, V., Kalaiselvi, P., & Sebastian, S. P. (2021). Metallothioneins: Diverse Protein Family to Bind Metallic Ions (M. K. Nazal & H. Zhao (eds.); p. Ch. 9). IntechOpen. https://doi.org/10.5772/intechopen.97658

Pedroso‐Santana, S., & Fleitas‐Salazar, N. (2020). Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polymer International, 69(5), 443–447. https://doi.org/10.1002/pi.5970

Pinzón-Bedoya, M. L., & Villamizar, L. E. V. (2009). Modelamiento de la cinética de bioadsorción de cr (iii) usando cáscara de naranja. DYNA (Colombia), 76(160), 95–106. https://www.redalyc.org/articulo.oa?id=49612068033

Rahman, M. S., & Sathasivam, K. V. (2015). Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models. BioMed Research International, 2015, 1–13. https://doi.org/10.1155/2015/126298

Rodríguez Heredia, D. (2017). Intoxicación ocupacional por metales pesados. Medisan, 21(12), 3372–3385. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192017001200012

Romero-Lázaro, E. M., Ramos-Pérez, D., Martín Romero, F., & Sedov, S. (2019). Indicadores indirectos de contaminación residual en suelos y sedimentos de la cuenca del río Sonora, México. Revista Internacional de Contaminación Ambiental, 35(2), 371–386. https://doi.org/10.20937/RICA.2019.35.02.09

Sahoo, T. R., & Prelot, B. (2020). Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. En Nanomaterials for the Detection and Removal of Wastewater Pollutants. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818489-9.00007-4

Saif, F. A., Yaseen, S. A., Alameen, A. S., Mane, S. B., & Undre, P. B. (2021). Identification and characterization of Aspergillus species of fruit rot fungi using microscopy, FT-IR, Raman and UV–Vis spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 246, 1–10. https://doi.org/10.1016/j.saa.2020.119010

Samuel, J., Pulimi, M., Paul, M. L., Maurya, A., Chandrasekaran, N., & Mukherjee, A. (2013). Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads. Bioresource Technology, 128, 423–430. https://doi.org/10.1016/j.biortech.2012.10.116

Sánchez-Duarte, R. G., Martínez-Macías, M. del R., Correa-Murrieta, M. A., Saldívar-Cabrales, J., Sánchez-Machado, D. I., & López-Cervantes, J. (2017). Síntesis de hidrogeles de quitosano a partir de cáscara de camarón para ensayos de adsorción de cobre. Revista Internacional de Contaminacion Ambiental, 33(Special Issue 1), 93–98. https://doi.org/10.20937/RICA.2017.33.esp02.09

SEMARNAT. (1994). Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental, agua para uso y consumo humano-Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. https://www.dof.gob.mx/nota_detalle.php?codigo=2063863&fecha=31/12/1969#gsc.tab=0

SEMARNAT. (1996). Norma Oficial Mexicana NOM-001-SEMARNAT- 1996, que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. En Diario Oficial de la Federación.

Stern, B. R. (2010). Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. Journal of Toxicology and Environmental Health - Part A: Current Issues, 73(2–3), 114–127. https://doi.org/10.1080/15287390903337100

Suteu, D., Zaharia, C., & Badeanu, M. (2016). Kinetic modeling of dye sorption from aqueous solutions onto apple seed powder. Cellulose Chemistry and Technology, 50(9–10), 1085–1091.

Tan, W. S., & Ting, A. S. Y. (2012). Efficacy and reusability of alginate-immobilized live and heat-inactivated Trichoderma asperellum cells for Cu (II) removal from aqueous solution. Bioresource Technology, 123, 290–295. https://doi.org/10.1016/j.biortech.2012.07.082

Tejeda-Tovar, C., Villabona-Ortíz, A., Ortega-Toro, R., López-Génes, J., & Negrete-Palacio, A. (2021). Elimination of Cadmium (II) in aqueaous solution using corn cob (Zea mays) in batch system: adsorption kinetics and equilibrium. Revista Mexicana de Ingeniería Química, 20(1), 1059–1077.

Torres-Caban, R., Vega-Olivencia, C. A., Alamo-Nole, L., Morales-Irizarry, D., Roman-Velazquez, F., & Mina-Camilde, N. (2019). Removal of copper from water by adsorption with Calcium-Alginate/Spent-Coffee-Grounds composite beads. Materials, 12(3). https://doi.org/10.3390/ma12030395

Torres, M. L., Corizo, A. M., Oberti, T. G., & Fernández, J. M. (2016). Characterization of commercial and algae (Undaria pinnatifida) extracted sodium alginate for future application in bone tissue engineering.

Upadhyay, U., Sreedhar, I., Singh, S. A., Patel, C. M., & Anitha, K. L. (2021). Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydrate Polymers, 251, 1–29. https://doi.org/10.1016/j.carbpol.2020.117000

Varnam, A. H., & Evans, M. G. (2000). Environmental Microbiology (M. P. Ltd (ed.)).

Velkova, Z., Kirova, G., Stoytcheva, M., Kostadinova, S., Todorova, K., & Gochev, V. (2018). Immobilized microbial biosorbents for heavy metals removal. Engineering in Life Sciences, 18(12), 871–881. https://doi.org/10.1002/elsc.201800017

Vendruscolo, F., da Rocha Ferreira, G. L., & Antoniosi Filho, N. R. (2017). Biosorption of hexavalent chromium by microorganisms. International Biodeterioration and Biodegradation. https://doi.org/10.1016/j.ibiod.2016.10.008

Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002

Wang, J., & Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 1–18. https://doi.org/10.1016/j.jhazmat.2020.122156

Xu, J., Song, X. C., Zhang, Q., Pan, H., Liang, Y., Fan, X. W., & Li, Y. Z. (2011). Characterization of metal removal of immobilized Bacillus strain CR-7 biomass from aqueous solutions. Journal of Hazardous Materials, 187(1–3), 450–458. https://doi.org/10.1016/j.jhazmat.2011.01.047

Yu, K., Ho, J., McCandlish, E., Buckley, B., Patel, R., Li, Z., & Shapley, N. C. (2013). Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 31–41. https://doi.org/10.1016/j.colsurfa.2012.12.043

Zazzali, I., Aguirre Calvo, T. R., Pizones Ruíz-Henestrosa, V. M., Santagapita, P. R., & Perullini, M. (2019). Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads. Carbohydrate Polymers, 206(July 2018), 749–756. https://doi.org/10.1016/j.carbpol.2018.11.051

Published
2022-11-26
How to Cite
Dávila-Parra, F., Plascencia-Jatomea, M., Monge-Amaya, O., Mártin-García, A., de la Vega Olivas, J., & Almendariz-Tapia, F. (2022). Influence of initial copper concentration, pH, and cross-linked alginate-chitosan and alginate-chitosan-Aspergillus australensis composite beads on the adsorption capacity and removal efficiency of copper ions. Revista Mexicana De Ingeniería Química, 21(3), IA2892. https://doi.org/10.24275/rmiq/IA2892
Section
Environmental Engineering

Most read articles by the same author(s)