Evaluation of the use of banana pseudostem with thermoplastic corn starch for the elaboration of biodegradable dishes

Keywords: biodegradable dishes, waste, thermoplastic starch, fiber.

Abstract

This project evaluated the use of fiber residues from the banana pseudostem (Musa Paradisiaca L.) with thermoplastic corn starch (Zea Mays) in the production of biodegradable dishes for food use. The homogenized mixture was gelatinized at 60 °C and thermopressed at 150 °C for 20 min. The amounts of thermoplastic starch and polyvinyl alcohol were varied.  The raw material and the final product were characterized by physical-chemical, mechanical, and thermal analyses. The lignocellulosic fibers improved the tensile strength, modulus of elasticity, hardness, and viscoelasticity in the dish, also presented hydrophilic character. Degradation increased with the increase of thermoplastic starch. The unit cost per dozen plates was $ 1.63. It is concluded that the residues of fibers from the pseudostem of banana and thermoplastic starch turned out to be an alternative in the elaboration of biodegradable dishes.

References

Aguilar-Borjas, S. (2005). Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud En Tabasco 11, 333–338. https://www.redalyc.org/pdf/487/48711206.pdf

Almario, A., Durango, L. and Arizal, E. (2018). Estudio de las propiedades absorbentes de un biopolímero a base de almidón de yuca (Manihot esculenta Crantz). Espacios 39, 15. http://www.revistaespacios.com/cited2017/cited2017-15.html

Alvarado Flores, J. J. and Rutiaga Quiñones, J. G. (2018). Study of kinetics in thermogravimetric processes of lignocellulosic materials. Maderas: Ciencia y Tecnologia 20, 221–238. https://doi.org/10.4067/S0718-221X2018005002601

Álvarez Morales, E. L., León Morales, S. A., Sánchez Bravo, M. L. y Cusme Macías, B. L. (2020). Evaluación socioeconómica de la producción de jengibre en la zona norte de la provincia de Los Ríos. Journal of Business and Entrepreneurial 4, 86–95. https://doi.org/https://doi.org/10.37956/jbes.v4i2.78 1.1.1

Anchundia, K., Santacruz, S. and Coloma, J. (2016). Caracterización física de películas comestibles a base de cáscara de plátano (Musa Paradisiaca). Revista Chilena de Nutrición 43, 394–399. https://doi.org/10.4067/S0717-75182016000400009

Arik, E. A. y Us, F. (2014). Evaluation of structural properties of cellulose ether-corn starch based biodegradable films. International Journal of Polymeric Materials and Polymeric Biomaterials 63, 342–351. https://doi.org/10.1080/00914037.2013.845190

ASTM D 7334-08. (2013). Standard Practice for Surface Wettability of Coatings . Substrates and Pigments by Advancing Contact Angle Measurement 1. Annual Book of ASTM Standards. 8–10. https://doi.org/10.1520/D7334-08R13.2

ASTM D2240-15. (2017). Standard Test Method for Rubber Property—Durometer Hardness. In Astm D 2240. (January 2016), 1-13. https://doi.org/10.1520/D2240-15.2

ASTM D3039M-14. (2014). Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. In Annual Book of ASTM Standards. (May 2014),1-13. https://doi.org/10.1520/D3039

Barrios Guzmán, A. J., García Enríquez, S., Manríquez-González, R., Rivera Prado, J. de J. y Lomelí Ramírez, M. G. (2015). Compositos biodegradables elaborados a partir de almidón termoplástico y partículas de madera de fresno. Revista Mexicana de Ciencias Forestales 6, 26–41. https://doi.org/10.29298/rmcf.v6i28.258

Bátori, V. (2019). Fruit Wastes to Biomaterials: Development of biofilms and 3D objects in a circular economy system. Doctoral thesis in Engineering and Technology, University of Boras, Suecia. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-15463

Bianco, H., Capote, T. and Garmendia, C. (2014). Determinación de humedad en harina precocida de maíz blanco utilizando un horno de microondas doméstico. Revista Del Instituto Nacional de Higiene Rafael Rangel 45, 50–63. https://pesquisa.bvsalud.org/portal/resource/pt/lil-789599

Bodîrlǎu, R., Teacǎ, C. A. and Spiridon, I. (2014). Green composites comprising thermoplastic corn starch and various cellulose-based fillers. BioResources 9, 39–53. https://doi.org/10.15376/biores.9.1.39-53

Buteler, M. (2019). El problema del plástico: ¿Qué es la contaminación por plástico y por qué nos afecta a todos? CONICET Digital 16, 56–60. https://ri.conicet.gov.ar/handle/11336/109678

Calderón Freire, E., Torres Gallegos, L. Ortega Espín, A. (2019). Fabricación de material biodegradable a base de polimeros termoplásticos combinados con fibras cortas de lino. FIGEMPA: Investigación y Desarrollo 1, 32–38. https://doi.org/10.29166/revfig.v1i1.1402

Calero Zurita, M., De Santis Arauz, D., Rivas Sierra, D. y Bernal Gutierrez, A. (2021). Estado del arte de bioplástico proveniente de los residuos agroindustriales del plátano (Musa Paradisiaca), para la producción de envases biodegradables. Revista Ingeniería e Innovación 9, 10. https://revistas.unicordoba.edu.co/index.php/rii/article/view/2416

Calvo-Flores, F. e Isac, J. (2013). Introducción a la química de los polímeros biodegradables : una experiencia para alumnos de segundo ciclo de la ESO y Bachillerato. Real Sociedad Española de Química 109, 38–44. www.rseq.org

Chávez Porras, Á. y Rodríguez González, A. (2016). Aprovechamiento de residuos orgánicos agrícolas y forestales en Iberoamérica. Academia y Virtualidad 9, 90–107. https://doi.org/10.18359/ravi.2004

Cheng, W. (2019). Preparation and properties of lignocellulosic fiber/CaCO 3 /thermoplastic starch composites. Carbohydrate Polymers 211, 204–208. https://doi.org/10.1016/j.carbpol.2019.01.062

Díaz, S., Ortega, Z., Benítez, A. N., Costa, D., Carvalheiro, F., Fernandes, M. C. y Duarte, L. C. (2021). Assessment of the effect of autohydrolysis treatment in banana’s pseudostem pulp. Waste Management 119, 306–314. https://doi.org/10.1016/j.wasman.2020.09.034

Encalada, K., Aldás, M., Proaño, E. y Valle, V. (2018). An overview of starch-based biopolymers and their biodegradability. Ciencia e Ingeniería 59, 245–258. http://www.redalyc.org/articulo.oa?id=507557607005

Espina, M., Cruz-Tirado, J. P. y Siche, R. (2016). Propiedades mecánicas de bandejas elaboradas con almidón de especies vegetales nativas y fibras de residuos agroindustriales. Scientia Agropecuaria 7, 133–143. https://doi.org/10.17268/sci.agropecu.2016.02.06

Fitch-Vargas, P. R., Camacho-Hernández, I. L., Martínez-Bustos, F., Islas-Rubio, A. R., Carrillo-Cañedo, K. I., Calderón-Castro, A., Jacobo-Valenzuela, N., Carrillo-López, A., Delgado-Nieblas, C. I. y Aguilar-Palazuelos, E. (2019). Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber. Carbohydrate Polymers 219, 378–386. https://doi.org/10.1016/j.carbpol.2019.05.043

García-Cruz, H. I., Jaime-Fonseca, M. R., Borries-Medrano., E. V. y Vieyra, H. (2020). Extrusion parameters to produce a PLA-starch derived thermoplastic polymer. Revista Mexicana de Ingeniería Química. 19(1). 395–412. https://doi.org/https://doi.org/10.24275/miq/Poly1529

Gerezgiher, A. G., Tamási, K., Ibrahim, J. F. M., Kónya, C. y Szabó, T. (2020). Thermoplastic corn starch reinforced with pine wood fibre and calcium carbonate precipitate filler. Journal of Physics: Conference Series 1527. https://doi.org/10.1088/1742-6596/1527/1/012042

Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A. y Mashkour, M. (2018). Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. International Journal of Biological Macromolecules 112, 442–447. https://doi.org/10.1016/j.ijbiomac.2018.02.007

Gómez, J. A., Sánchez, O. J. y Matallana. L. G. (2021). Processes of transformation: Perspective of use for the residues of the plantain agro–industry. Produccion y Limpia. 16, 6–30. https://doi.org/10.22507/PML.V16N1A1

Guerrero, A. B., Aguado, P. L., Sánchez, J. y Curt, M. D. (2015). GIS-Based Assessment of Banana Residual Biomass Potential for Ethanol Production and Power Generation: A Case Study. Waste and Biomass Valorization 7, 405–415. https://doi.org/10.1007/s12649-015-9455-3

Guleria, A., Singha, A. S. y Rana, R. K. (2017). Preparation of starch-based biocomposites reinforced with mercerized lignocellulosic fibers: Evaluation of their thermal, morphological, mechanical, and biodegradable properties. International Journal of Polymer Analysis and Characterization 22, 595–609. https://doi.org/10.1080/1023666X.2017.1345558

Guzmán, M. y Murillo, E. A. (2018). Structural, thermal, rheological, morphological and mechanical properties of thermoplastic starch obtained by using hyperbranched polyester polyol as plasticizing agent. DYNA (Colombia) 85, 178–186. https://doi.org/10.15446/dyna.v85n206.71819

Haro Velasteguí, A. J., Borja Arévalo, A. y Triviño Bloisse, S. (2017). Análisis sobre el aprovechamiento de los residuos del plátano, como materia prima para la producción de materiales plásticos biodegradables. Dominio de Las Ciencias 3, 506–525. https://doi.org/http://dx.doi.org/10.23857/dom.cien.pocaip.2017.3.2.esp.506-525

Hernández-Neri, N., Gutiérrez-Antonio, C., García-Trejo, J.F., Ferengrino-Pérez, A.A. y Toledano-Ayala, M. (2022). Valorization of rice husks and bean straws through fuel pellets production: an experimental and modelling approach. Revista Mexicana de Ingeniería Química. 21. Alim2679. https://doi.org/10.24275/rmiq/Alim2679

Hessler, L. E. y Merola, G. V. (1949). Determination of Cellulose in Cotton and Cordage Fiber. Analytical Chemistry 21, 695–698. https://doi.org/10.1021/ac60030a014

Heydari, A. y Ali Razavi, S. M. (2021). Evaluating high pressure-treated corn and waxy corn starches as novel fat replacers in model low-fat O/W emulsions: A physical and rheological study. International Journal of Biological Macromolecules 184, 393–404. https://doi.org/10.1016/j.ijbiomac.2021.06.052

Hussain, S., Mohamed, A. A., Alamri, M. S., Ibraheem, M. A., Qasem, A. A. A., Shahzad, S. A. y Ababtain, I. A. (2020). Use of gum cordia (Cordia myxa) as a natural starch modifier; effect on pasting, thermal, textural, and rheological properties of corn starch. Foods 9, 1–14. https://doi.org/10.3390/foods9070909

Ibáñez, A., Martínez, A. y Ferrándiz, S. (2020). Study of the influence of the almond shell variety onthe mechanical properties of starch-basedpolymer biocomposites. Polymers 12, 1–20. https://doi.org/10.3390/POLYM12092049

Ibrahim, M. M., Moustafa, H., El Rahman, E. N. A., Mehanny, S., Hemida, M. H. y El-Kashif, E. (2020). Reinforcement of starch based biodegradable composite using Nile rose residues. Journal of Materials Research and Technology 9, 6160–6171. https://doi.org/10.1016/j.jmrt.2020.04.018

INEC-ESPAC. (2019). Tabulados ESPAC 2019 (p. 79). https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2

INEC. (2013). INEC presenta sus proyecciones poblacionales cantonales. Instituto Nacional de Estdistica y Censo. Disponible en: https://www.ecuadorencifras.gob.ec/inec-presenta-sus-proyecciones-poblacionales-cantonales/

INEN 1666. (2014). Almidones y Féculas. Determinacion del contenido en humedad. Método de desecación en estufa, 13(Diciembre 2013),1-5. https://www.normalizacion.gob.ec/buzon/normas/nte_inen_iso_1666.pdf

Jiménez, A., Hernández, L., Callahuazo-Reinoso, Y., Avilés, R., Pino, J. y García, M. (2019). Película comestible a partir de cáscara de plátano (Musa Paradisiaca L.). Ciencia y Tecnología de Alimentos 29, 49–57. file:///C:/Users/cliente/Downloads/12-ArielRguez..pdf

Karim, A. A., Norziah, M. H. y Seow, C. C. (2000). Methods for the study of starch retrogradation. Food Chemistry 71, 9–36. https://doi.org/10.1016/S0308-8146(00)00130-8

Khan, M. R. y Perveen, B. (2010). Transformation of agricultural wastes into sugar by Trichoderma viride. Journal of Pure and Applied Microbiology 4, 103–108. https://www.researchgate.net/profile/Mohammad-Khan-146/publication/285951798_Transformation_of_Agricultural_Wastes_into_Sugar_by_Trichoderma_viride/links/59aad1840f7e9bdd114fb880/Transformation-of-Agricultural-Wastes-into-Sugar-by-Trichoderma-viride.pdf

Li, W., Li, C., Gu, Z., Qiu, Y., Cheng, L., Hong, Y. y Li, Z. (2016). Retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme. Food Chemistry 203, 308–313. https://doi.org/10.1016/j.foodchem.2016.02.059

Luna, G., Villada, H. y Velasco, R. (2009). Almidón termoplástico de yuca reforzado con fibra de fique: Preliminares. DYNA (Colombia) 76, 145–151. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532009000300015

Ma, Y. S., Pan, Y., Xie, Q. T., Li, X. M., Zhang, B. y Chen, H. Q. (2019). Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chemistry 274, 319–323. https://doi.org/10.1016/j.foodchem.2018.09.005

Maldonado, L., Manzano, P., Cuesta, F., Cedeño, Y. y Zevallos, N. (2013). Caracetrización físico-química de las fibras obtenidas del pseudotallo de la planta de banano (Musa paradisiaca) procedente del cantón el Guabo de la Provincia del Oro. Yachana 2, 17–20. http://revistas.ulvr.edu.ec/index.php/yachana/article/view/190

Marichelvam, M. K., Jawaid, M. y Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 7, 1–14. https://doi.org/10.3390/fib7040032

Miranda, D. (2020). 20 datos sobre el problema del plástico en el mundo. National Geographic España. Disponible en: https://www.nationalgeographic.com.es/mundo-ng/20-datos-sobre-problema-plastico-mundo_15282

Orue, A., Corcuera, M. A., Peña, C., Eceiza, A. y Arbelaiz, A. (2016). Bionanocomposites based on thermoplastic starch and cellulose nanofibers. Journal of Thermoplastic Composite Materials 29, 817–832. https://doi.org/10.1177/0892705714536424

Roca-Pérez, L., León Tapia, D., Andrade Cadena, J. V., Hernández, R. B., Senescyt, B. P. y Católica, P. U. (2017). Aprovechamiento de residuos orgánicos en distintos cultivos de Ecuador. Axioma 3, 84–95. http://190.15.137.82/index.php/axioma/article/view/486

Salgado-Delgado, A. M., Lozano-Pineda, E., Salgado-Delgado. R., Hernández-Uribe, J. P., Olarte-Paredes, A. y Granados-Baeza, M. J. (2022). Chemical modification of rice (Oryza sativa) and potato (Solanum tuberosum) starches by silanization with trimethoxy(methyl)silane. Revista Mexicana de Ingeniería Química. 21, 23–43. https://doi.org/https://doi.org/10.24275/miq/Alin2802

Salmerón Herrera, F. I. (2019). Elaboración y caracterización de un material biodegradable utilizando desechos de lechuga de la Planta Poscosecha en la Escuela Agrícola Panamericana. Tesis de licenciatura en Ingeniería de Agroindustria Alimentaria, Escuela Agrícola Panamericana, Honduras. https://bdigital.zamorano.edu/bitstream/11036/6505/1/AGI-2019-T053.pdf

Santos, T. A. y Spinacé, M. A. S. (2021). Sandwich panel biocomposite of thermoplastic corn starch and bacterial cellulose. International Journal of Biological Macromolecules 167, 358–368. https://doi.org/10.1016/j.ijbiomac.2020.11.156

Schröpfer, S. B., Bottene, M. K., Bianchin, L., Robinson, L. C., De Lima, V., Jahno, V. D., Da Silva Barud, H. y Lima Ribeiro, S. J. (2015). Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate) in soil. Polimeros 25, 154–160. https://doi.org/10.1590/0104-1428.1712

Sikora, J., Majewski, Ł. y Puszka, A. (2020). Modern biodegradable plastics-processing and properties: Part I. Materials 13, 1–20. https://doi.org/10.3390/MA13081986

Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. y Wolfe, J. (2008). Determinación de sólidos totales en biomasa y sólidos disueltos totales en procesos líquidos, 31(Marzo 2008), 1-9. https://es.scribd.com/document/483878900/NREL-TP-510-42621-Determination-of-Total-Solids-in-Biomass-and-Total-Dissolved-Solids-in-Liquid-Process-Samples-Laboratory-Analytical-Procedure-LAP

Surya, I., Chong, E. W. N., Abdul Khalil, H. P. S., Funmilayo, O. G., Abdullah, C. K., Sri Aprilia, N. A., Olaiya, N. G., Lai, T. K. y Oyekanmi, A. A. (2021). Augmentation of physico-mechanical, thermal and biodegradability performances of bio-precipitated material reinforced in Eucheuma cottonii biopolymer films. Journal of Materials Research and Technology 12, 1673–1688. https://doi.org/10.1016/j.jmrt.2021.03.055

Tang, M., Hong, Y., Gu, Z., Zhang, Y. y Cai, X. (2013). The effect of xanthan on short and long-term retrogradation of rice starch. Starch/Staerke 65, 702–708. https://doi.org/10.1002/star.201200170

Torres Becerril, M., Carmona García, R. y Aguirre Cruz, A. (2017). Obtención y caracterización estructural y funcional de almidón acetilado de malanga (Colocasia esculenta Schott). Revista Mexicana de Ciencias Agrícolas 6, 905–912. https://doi.org/10.29312/remexca.v6i4.629

Torres, M. D., Chenlo, F. y Moreira, R. (2018). Viscoelastic and textural characteristics of gels obtained from potato starch roasted under several temperature-time conditions. International Journal of Polymer Science 2018, 11. https://doi.org/10.1155/2018/7606359

Valero-Valdivieso, M. F., Ortegón, Y. y Uscategui, Y. (2013). Biopolímeros: Avances y perspectivas. DYNA 80, 171–180. http://www.redalyc.org/articulo.oa?id=49628728019

Vargas Soto, L. F., Martínez Yepes, P. N. y Guarnizo Franco, A. (2013). Algunas Características Fisicoquímicas del jugo del Pseudotallo de Plátano Dominico Hartón. Revista de Ciencias 17, 47–57. https://revistaciencias.univalle.edu.co/index.php/revista_de_ciencias/article/view/498/620

Velásquez-Barreto, F. F. y Velezmoro, C. (2018). Propiedades reológicas y viscoelásticas de almidones de tubérculos andinos. Scientia Agropecuaria 9, 189–197. https://doi.org/10.17268/sci.agropecu.2018.02.03

VELP Scientifica. (2019). Crude Fiber Determination in Feed. https://www.velp.com/public/file/10crude-fiber-determination-in-feed-weende-method-fiwe-advance-206305-216589-216592-216595.pdf

Yin, P., Zhou, W., Zhang, X., Guo, B. y Li, P. (2020). Bio-based thermoplastic starch composites reinforced by dialdehyde lignocellulose. Molecules 25, 32–36. https://doi.org/10.3390/molecules25143236

Yingfeng, Z., Jiyou, G., Haiyan, T. y Yanhua, Z. (2012). Comparative study of plasticizing effect of corn starch using formamide and urea. Proceedings of 2012 International Conference on Biobase Material Science and Engineering, BMSE 2012, 4–7. https://doi.org/10.1109/BMSE.2012.6466167

Zhang, Y., Zhao, X., Bao, X., Xiao, J. y Liu, H. (2021). Effects of pectin and heat-moisture treatment on structural characteristics and physicochemical properties of corn starch. Food Hydrocolloids 117, 106–664. https://doi.org/10.1016/j.foodhyd.2021.106664

Published
2022-11-25
How to Cite
Hernandez-Gil, L., Caldas-Cortez, L., Contreras-López, D., & Jiménez-Sánchez, A. (2022). Evaluation of the use of banana pseudostem with thermoplastic corn starch for the elaboration of biodegradable dishes. Revista Mexicana De Ingeniería Química, 21(3), Mat2893. https://doi.org/10.24275/rmiq/Mat2893