Effect of the storage relative humidity on the physicochemical properties of corn starch edible films obtained by a combination of extrusion process and casting technique

Keywords: corn starch, edible films, extrusion technology-casting technique, storage relative humidity, physicochemical properties.

Abstract

Starch is one of the most used polysaccharides in the formulation of Edible Films (EFs). This work aimed to develop starch-based EFs employing extrusion technology as a pretreatment to casting technique and evaluate the storage relative humidity (RH) effect to determine their possible application as food coating. Corn starch and a mixture of plasticizers (sorbitol and glycerol) were processed in a twin-screw extruder. The casting technique was used for EFs formation. The EFs were conditioned at different storage RH (53, 75, and 100%) for ten weeks. The studied response variables were: puncture resistance (PR), puncture deformation (PD), water vapor permeability (WVP), water solubility (WS), X-ray diffraction patterns, and relative crystallinity. EFs at 53 and 75% RH showed the most stable behavior in PR and PD. Concerning the barrier properties, it was found that EFs stored at 53% RH had the lowest value of WVP and XRD patterns showing that storage time produces crystalline zones by the aging effect. Starch-based EFs obtained by the combination of extrusion-casting and stored at an RH of 53 and 75% presented the best physicochemical properties. Hence, these EFs could be used as coatings of intermediate moisture foods.

Author Biographies

A. Calderón-Castro, Universidad Autónoma de Sinaloa
Disciplines
  • Materials Chemistry
  • Bioengineering
Skills and expertise
  • Starch Technology
  • Rotation
  • Cereal Science
  • Food Science and Technology
  • Food Chemistry
  • Cereal Technology
  • Biopolymers
  • Mechanical Properties
  • Natural Fibers
  • Food Processing
  • Food Processing and Engineering
E. Aguilar-Palazuelos, Universidad Autónoma de Sinaloa
Introduction Ernesto Aguilar-Palazuelos currently works at the Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa. Ernesto does research in Food Science. Their current project is 'High Fiber breakfast cereals with high content of bioactive compounds'. Disciplines
  • Food Science
Skills and expertise
  • Starch
  • Composites
  • Food Science and Technology
  • Food Technology
  • Food Chemistry
  • Food Processing
  • Material Characterization
  • Cereal
  • Food Science
  • Antioxidants
  • Antioxidant Activity
  • Phenolic Compounds
  • Food Analysis
  • Corn
M.O. Vega-García, Universidad Autónoma de Sinaloa
Disciplines
  • Food Science
Skills and expertise
  • Tomato
  • Thermophysical Properties
  • Apple
  • Post Harvest Technology
  • Chilling Injury
  • Fresh Cut
  • Respiration and ethylene production
  • Controlled and modified atmosphere
  • lycopene
J.J. Zazueta-Morales, PhD, Universidad Autónoma de Sinaloa
Disciplines
  • Bioengineering
  • Food Science
  • Agronomy
  • Agricultural Plant Science
Skills and expertise
  • Food Science and Technology
  • Food Processing
  • Cereal Science
  • Food Engineering
  • Starch
  • Food Science
  • Agronomy
  • Maize
  • Food Chemistry
X.A. Ruiz-Armenta, Universidad Autónoma de Sinaloa
Disciplines
  • Food Science
  • Biochemistry
  • Analytical Chemistry
  • Phytochemistry
Skills and expertise
  • Extrusion
  • Food Science and Technology
  • Food Processing
  • Food & Nutrition
  • Antioxidants
  • Functional Foods
  • Optimization Methods
  • Response Surface Methodology
  • phenolics compounds
  • Dietary Supplements
  • Starch
  • Cereals
  • Nutritional Science
P.R. Fitch-Vargas, Universidad Autónoma de Sinaloa
Introduction Starch, edible coatings, materials, biodegradability, fibers, food science Disciplines
  • Biochemistry
  • Food Science
  • Bioengineering
Skills and expertise
  • Food Packaging
  • Food Preservation
  • Food Science and Technology
  • Starch
  • Food Technology
  • Food Processing and Engineering
  • Cereal Technology
  • Physicochemical Properties
  • Packaging
  • Food Processing

References

Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C. and Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food hydrocolloids, 49, 135-143. https://doi.org/https://doi.org/10.1016/j.foodhyd.2015.03.015

Akbari, Z., Ghomashchi, T. and Moghadam, S. (2007). Improvement in food packaging industry with biobased nanocomposites. International Journal of Food Engineering, 3(4), 1-24. https://doi.org/10.2202/1556-3758.1120

Apriyana, W., Poeloengasih, C. D., Hernawan, Hayati, S. N., Pranoto, Y., Nuringtyas, T. R., et al.Kusumaadmaja, A. (2016). Mechanical and microstructural properties of sugar palm (Arenga pinnata Merr.) starch film: Effect of aging. AIP Conference Proceedings.

Bader, H. G. and Göritz, D. (1994). Investigations on High Amylose Corn Starch Films. Part 3: Stress Strain Behaviour. Starch‐Stärke, 46(11), 435-439. https://doi.org/10.1002/star.19940461106

Basiak, E., Lenart, A. and Debeaufort, F. (2017). Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. Journal of the Science of Food and Agriculture, 97(3), 858-867. https://doi.org/10.1002/jsfa.7807

BeMiller, J. N. and Huber, K. C. (2015). Physical modification of food starch functionalities. Annual Review of Food Science and Technology, 6, 19-69. https://doi.org/10.1146/annurev-food-022814-015552

Bertuzzi, M. A., Armada, M. and Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82(1), 17-25. https://doi.org/10.1016/j.jfoodeng.2006.12.016

Bohórquez-Ayala, M., Rojano-Quiroz, D., González-Cuello, R., García-Zapateiro, L. and Ortega-Toro, R. (2021). Application of modified vegetable oil for improvement of biodegradable materials based on thermoplastic starch and polylactic acid. Revista Mexicana de Ingeniería Química, 20(1), 423-433. https://doi.org/10.24275/rmiq/Poly2164

Bonilla-Lagos, J., Vicentini, N. M., Dos Santos, R. M. C., Bittante, M. Q. B. and Sobral, P. J. A. (2015). Mechanical properties of cassava starch films as affected by different plasticizers and different relative humidity conditions. International Journal of Food Studies, 4(1), 116-125. https://doi.org/10.7455/ijfs/4.1.2015.a10

Calderón-Castro, A., Vega-García, M. O., Zazueta-Morales, J. J., Fitch-Vargas, P. R., Carrillo-López, A., Gutiérrez-Dorado, R., et al.Aguilar-Palazuelos, E. (2018). Effect of extrusion process on the functional properties of high amylose corn starch edible films and its application in mango (Mangifera indica L.) cv. Tommy Atkins. Journal of Food Science and Technology, 55(3), 905-914. https://doi.org/10.1007/s13197-017-2997-6

Castro, L. M., Alexandre, E. M., Saraiva, J. A. and Pintado, M. (2020). Impact of high pressure on starch properties: A review. Food hydrocolloids, 106, 105877. https://doi.org/https://doi.org/10.1016/j.foodhyd.2020.105877

Cazón, P. and Vázquez, M. (2020). Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environmental Chemistry Letters, 18(2), 257-267. https://doi.org/10.1007/s10311-019-00936-3

Cheng, H., Chen, L., McClements, D. J., Yang, T., Zhang, Z., Ren, F., et al.Jin, Z. (2021). Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science & Technology, 114, 70-82. https://doi.org/10.1016/j.tifs.2021.05.017

Chinma, C. E., Ariahu, C. C. and Alakali, J. S. (2015). Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films. Journal of Food Science and Technology, 52(4), 2380-2386. https://doi.org/10.1007/s13197-013-1227-0

Chiumarelli, M. and Hubinger, M. D. (2014). Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food hydrocolloids, 38, 20-27. https://doi.org/10.1016/j.foodhyd.2013.11.013

Dai, L., Qiu, C., Xiong, L. and Sun, Q. (2015). Characterization of corn starch-based films reinforced with taro starch nanoparticles. Food Chemistry, 174, 82-88. https://doi.org/10.1016/j.foodchem.2014.11.005

Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I. and Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology 109, 57-64. https://doi.org/10.1016/j.postharvbio.2015.05.015

Famá, L., Goyanes, S. and Gerschenson, L. (2007). Influence of storage time at room temperature on the physicochemical properties of cassava starch films. Carbohydrate Polymers, 70(3), 265-273. https://doi.org/10.1016/j.carbpol.2007.04.003

Fitch-Vargas, P. R., Aguilar-Palazuelos, E., Vega-García, M. O., Zazueta-Morales, J. J., Calderón-Castro, A., Montoya-Rodríguez, A., et al.Camacho-Hernández, I. L. (2019). Effect of a corn starch coating obtained by the combination of extrusion process and casting technique on the postharvest quality of tomato. Revista Mexicana de Ingeniería Química, 18(3), 789-801. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Fitch

Fitch‐Vargas, P. R., Aguilar‐Palazuelos, E., Zazueta‐Morales, J. J., Vega‐García, M. O., Valdez‐Morales, J. E., Martínez‐Bustos, F. and Jacobo‐Valenzuela, N. (2016). Physicochemical and microstructural characterization of corn starch edible films obtained by a combination of extrusion technology and casting technique. Journal of Food Science, 81(9), 2224-2232. https://doi.org/10.1111/1750-3841.13416

Galus, S. and Lenart, A. (2019). Optical, mechanical, and moisture sorption properties of whey protein edible films. Journal of Food Process Engineering, 42(6), 1-10. https://doi.org/10.1111/jfpe.13245

Garcia, M. A., Martino, M. N. and Zaritzky, N. E. (2000a). Lipid addition to improve barrier properties of edible starch‐based films and coatings. Journal of Food Science, 65(6), 941-944. https://doi.org/10.1111/j.1365-2621.2000.tb09397.x

Garcia, M. A., Martino, M. N. and Zaritzky, N. E. (2000b). Microstructural characterization of plasticized starch‐based films. Starch‐Stärke, 52(4), 118-124. https://doi.org/10.1002/1521-379X(200006)52:4<118::AID-STAR118>3.0.CO;2-0

Gennadios, A., Brandenburg, A. H., Park, W., Weller, C. L. and Testin, R. F. (1994). Water vapor permeability of wheat gluten and soy protein isolate films. Industrial Crops and Products, 2(3), 189-195. https://doi.org/10.1016/0926-6690(94)90035-3

Gomez, M. H., McDonough, C. M., Rooney, L. W. and Waniska, R. D. (1989). Changes in corn and sorghum during nixtamalization and tortilla baking. Journal of Food Science, 54(2), 330-336. https://doi.org/10.1111/j.1365-2621.1989.tb03074.x

Gontard, N., Guilbert, S., Marchesseau, S. and Cuq, J. L.(1994).Edible wheat gluten films: optimization of the main process variables and improvement of water vapor barrier properties by combining gluten proteins with lipids. In: Developments in Food Engineering, (T. Yano, R. Matsuno and K. Nakamura, eds), Pp. 790-792. Springer, Boston, MA.

Guilbert, S. and Gontard, N.(2005).Agro-polymers for edible and biodegradable films: review of agricultural polymeric materials. In: Innovations in Food Packaging, (J. H. Han, eds), Pp. 263. Elsevier Academic Press, Winnipeg, Manitoba.

Gutiérrez, T. J., Morales, N. J., Pérez, E., Tapia, M. S. and Famá, L. (2015a). Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packaging and Shelf Life, 3, 1-8. https://doi.org/10.1016/j.fpsl.2014.09.002

Gutiérrez, T. J., Tapia, M. S., Pérez, E. and Famá, L. (2015b). Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food hydrocolloids, 45, 211-217. https://doi.org/10.1016/j.foodhyd.2014.11.017

Iftikhar, S. A. and Dutta, H. (2019). Status of polymorphism, physicochemical properties and in vitro digestibility of dual retrogradation-annealing modified rice starches. International Journal of Biological Macromolecules, 132, 330-339. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.03.206

Kerch, G. and Korkhov, V. (2011). Effect of storage time and temperature on structure, mechanical and barrier properties of chitosan-based films. European Food Research and Technology, 232(1), 17-22. https://doi.org/10.1007/s00217-010-1356-x

López-Chavez, M. C., Osorio-Revilla, G., Arellano-Cárdenas, S., Gallardo-Velázquez, T., Flores-Valle, S. O. and López-Cortez, M. S. (2017). Preparation of starch/clay/glycerol nanocomposite films and their FTIR, XRD, SEM and mechanical characterizations. Revista Mexicana de Ingeniería Química, 16(3), 793-804.

Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N. and Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(4), 379-386. https://doi.org/10.1016/S0144-8617(02)00058-9

Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N. and Zaritzky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75(4), 453-460. https://doi.org/10.1016/j.jfoodeng.2005.04.031

Mali, S., Sakanaka, L. S., Yamashita, F. and Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283-289. https://doi.org/10.1016/j.carbpol.2005.01.003

Medrano-de Jara, E., García-Hernández, E., Quequezana-Bedregal, M., Arrieta-González, C., Salgado-Delgado, R., Lastarria-Tapia, H. and Castañón-Vilca, J. (2020). Potato starch-based films: Effects of glycerol and montmorillonite nanoclay concentration. Revista Mexicana de Ingeniería Química, 19(2), 627-637. https://doi.org/10.24275/rmiq/Poli779

Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Neto, A. R. S., Marques, A. C. P., Marconcini, J. M., et al.Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452-458. https://doi.org/10.1016/j.carbpol.2015.10.093

Müller, C. M. O., Yamashita, F. and Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82-87. https://doi.org/10.1016/j.carbpol.2007.07.026

Osés, J., Fabregat-Vázquez, M., Pedroza-Islas, R., Tomás, S. A., Cruz-Orea, A. and Maté, J. I. (2009). Development and characterization of composite edible films based on whey protein isolate and mesquite gum. Journal of Food Engineering, 92(1), 56-62. https://doi.org/10.1016/j.jfoodeng.2008.10.029

Perez, E., Segovia, X., Tapia, M. S. and Schroeder, M. (2012). Native and cross-linked modified Dioscorea trifida (cush-cush yam) starches as bio-matrices for edible films. Journal of Cellular Plastics, 48(6), 545-556. https://doi.org/10.1177/0021955X12445603

Piñeros-Guerrero, N., Marsiglia-Fuentes, R. and Ortega-Toro, R. (2021). Improvement of the physicochemical properties of composite materials based on cassava starch and polycaprolactone reinforced with sodium montmorillonite. Revista Mexicana de Ingeniería Química, 20(3), 1-12. https://doi.org/10.24275/rmiq/Alim2416

Quequezana-Bedregal, M. J., Castillo-Rosales, K. A., Mederano-de Jara, E., Vargas-Galarza, Z., Lastarria-Tapia, H., Castañón-Vilca, J. and García-Hernández, E. (2021). Rice flour-based films: effects of type and solvent and plasticizer concentration. Revista Mexicana de Ingeniería Química, 20(1), 323-332. https://doi.org/10.24275/rmiq/Poly1829

Ranganathaiah, C., Ramani, R. and Ramachandra, P. (2002). Influence of vinylidenefluoride on the physical ageing of poly (chlorotrifluoroethylene). European Polymer Journal, 38(11), 2285-2294. https://doi.org/10.1016/S0014-3057(02)00110-6

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R. and Sahari, J. (2016). Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. Journal of Food Science and Technology, 53(1), 326-336. https://doi.org/10.1007/s13197-015-2009-7

Shah, U., Naqash, F., Gani, A. and Masoodi, F. A. (2016). Art and science behind modified starch edible films and coatings: a review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 568-580. https://doi.org/10.1111/1541-4337.12197

Singh, N., Cairns, P., Morris, V. J. and Smith, A. C. (1998). Physical properties of extruded wheat starch-additive mixtures. Cereal Chemistry, 75(3), 325-330. https://doi.org/10.1094/CCHEM.1998.75.3.325

Socaciu, M. I., Fogarasi, M., Semeniuc, C. A., Socaci, S. A., Rotar, M. A., Mureşan, V., et al.Vodnar, D. C. (2020). Formulation and characterization of antimicrobial edible films based on whey protein isolate and tarragon essential oil. Polymers, 12(8), 1748. https://doi.org/10.3390/polym12081748

Valdez-Fragoso, A., Welti-Chanes, J., Mújica-Paz, H. and Hernández-Carrillo, J. (2015). Tracing phenolic compounds through manufacturing of edible films from orange and grapefruit peels. Revista Mexicana de Ingeniería Química, 14(3), 567-578.

Van Soest, J. J. G., Benes, K., De Wit, D. and Vliegenthart, J. F. G. (1996a). The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer, 37(16), 3543-3552. https://doi.org/10.1016/0032-3861(96)00165-6

Van Soest, J. J. G., Hulleman, S. H. D., De Wit, D. and Vliegenthart, J. F. G. (1996b). Crystallinity in starch bioplastics. Industrial Crops and Products, 5(1), 11-22. https://doi.org/10.1016/0926-6690(95)00048-8

Versino, F., Lopez, O. V., Garcia, M. A. and Zaritzky, N. E. (2016). Starch‐based films and food coatings: An overview. Starch‐Stärke, 68(11-12), 1026-1037. https://doi.org/10.1002/star.201600095

Xie, F., Halley, P. J. and Avérous, L. (2012). Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Progress in polymer science, 37(4), 595-623. https://doi.org/10.1016/j.progpolymsci.2011.07.002

Zhong, Y. and Li, Y. (2014). Effects of glycerol and storage relative humidity on the properties of kudzu starch‐based edible films. Starch‐Stärke, 66(5), 524-532. https://doi.org/10.1002/star.201300202

Published
2022-10-03
How to Cite
Calderón-Castro, A., Aguilar-Palazuelos, E., Camacho-Hernández, I., Vega-García, M., Zazueta-Morales, J., Ruiz-Armenta, X., & Fitch-Vargas, P. (2022). Effect of the storage relative humidity on the physicochemical properties of corn starch edible films obtained by a combination of extrusion process and casting technique. Revista Mexicana De Ingeniería Química, 21(3), Alim2917. https://doi.org/10.24275/rmiq/Alim2917
Section
Food Engineering

Most read articles by the same author(s)