Evaluation of destructive and non-destructive measurement methods to determine the thickness of a titanium coating deposited by physical evaporation

  • R. Herrera-Basurto TMIC
  • F. Mercader-Trejo
  • A. Domínguez-García
  • G.C. Mondragón-Rodríguez
Keywords: coating thickness, magnetron sputtering, titanium, destructive measurement, non-destructive measurement.

Abstract

The purpose of this research is to develop reference Ti-coatings and analyze the thicknesses evaluated via destructive (DT) and non-destructive (NDT) measurement techniques. The Ti coating was deposited on a mirror finished AISI M2 steel by the magnetron process. The nominal value of the coating thickness was 1 μm. The NDT was the X-Ray Fluorescence (XRF) method, the thickness for the portable analyzer was 1.18 ± 0.19 μm and the thickness using the spectrometer XRF was 1.17 ± 0.24 μm. For DT, thickness measurements were carried out in the cross-sections of the Ti-coatings, using the Field Emission - Scanning Electron Microscopy equipped with Energy Dispersive Spectrometer (FE-SEM-EDS). The coating thickness measurements were performed with image analysis of secondary electrons (SE), backscattering electrons (BSC), mapping (MAP) and elemental profiles (LS) using ImageJ and Aztec software. The results of the thickness measurements are SE: 1.12 ± 0.15 μm, BSC: 1.14 ± 0.13 μm, LS: 1.25 ± 0.13 μm and MAP: 1.29 ± 0.6 μm. Variations in the results were identified and estimated in the uncertainty models proposed for each method.

References

Abiline, I., Laaneots, R., Nanits, M., & Riim, J. (2007). On the uncertainty of measurements by measuring the form of a surface. 84–93.

Ager, F.J. et-al.,(2017) Reconsidering the accuracy of X-ray fluorescence and ion beam based methods when used to measure the thickness of ancient gildings. Spectrochim. Acta Part B 135, 42–47.

Niton Portable XRF AnalyzerTM XL5. (n.d.). Retrieved June 16, 2022, from https://www.thermofisher.com/order/catalog/product/NITONXL5.

ASM International, & EDFAS Organizing Committee, editors (2012). ISTFA 2012: Conference Proceedings from the 38th International Symposium for Testing and Failure Analysis: November 11-15, 2012, Phoenix Convention Center, Phoenix, Arizona, USA. ASM International.

Baptista, A., Silva, F., Porteiro, J., Míguez, J., and Pinto, G. (2018). Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. In Coatings (Vol. 8, Issue 11, p. 402). https://doi.org/10.3390/coatings8110402.

Chemat, F., Garrigues, S., & de la Guardia, M. (2019). Portability in analytical chemistry: a green and democratic way for sustainability. Current Opinion in Green and Sustainable Chemistry, 19, 94–98. https://doi.org/10.1016/j.cogsc.2019.07.007

Coating Thickness Gauges | Helmut Fischer. (n.d.). Available at: https://www.helmut-fischer.com/helmut-fischer-products/portable-coating-thickness-gauges. Accessed: February 04, 2022.

Estill, W. B., & Moody, J. C. (1965). Application of electron microscopy in dimensional metrology. https://doi.org/10.2172/4575353.

Giurlani, W., Berretti, E., Innocenti, M., & Lavacchi, A. (2020). Measuring the Thickness of Metal Coatings: A Review of the Methods. Coatings, 10(12), 1211. https://doi.org/10.3390/coatings1012121.

Hadis, N. S. M., Manaf, A. A., & Herman, S. H. (2015). Comparison on TiO2 thin film deposition method for fluidic based glucose memristor sensor. 2015 IEEE International Circuits and Systems Symposium (ICSyS), 36–39. https://doi.org/10.1109/circuitsandsystems.2015.7394060.

Hoffmann, K. P., Ahbe, T., Herrmann, K., Hasche, K., Pohlenz, F., & Sun, J. (2003). Development and calibration of standards for the coating thickness in the range of micrometer and nanometer. Surface and Coatings Technology, 169-170, 732–734. https://doi.org/10.1016/s0257-8972(03)00213-5.

Ilion+TM: planar surface preparation for SEM cross section viewing. (2010). Microelectronics International, 27(3). https://doi.org/10.1108/mi.2010.21827cad.001.

Kim, H. C., Jung, W. S., Kang, C. Y., Yoon, S. J., Ju, B. K., & Jeong, D. Y. (2008). Investigation of piezoelectric ceramic size effect for miniaturing the piezoelectric energy harvester. Journal of Sensor Science and Technology, 17(4), 267–272. https://doi.org/10.5369/jsst.2008.17.4.267.

Krishnan, K. M. (2021). Scanning Electron Microscopy. Principles of Materials Characterization and Metrology, 693–744. https://doi.org/10.1093/oso/9780198830252.003.0010.

Kourentzi, K., & Wilson, R. (2020). Nanobiotechnology for medical diagnostics. Revista Mexicana De Ingeniería Química, 13(1), 9-18. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1292.

Kolbe, M.; Beckhoff, B.; Krumrey, M.; Ulm, G. (2005) Thickness determination for Cu and Ni nanolayers: Comparison of completely reference-free fundamental parameter-based X-ray fluorescence analysis and X-ray reflectometry. Spectrochim. Acta Part B 60, 505–510.

López-Arenas, T., & Pulis, A. (2020). On-line monitoring of a biological process for wastewater treatment. Revista Mexicana De Ingeniería Química, 3(1), 51-63. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2130.

Mañoso, E., Herrera-Basurto, R., Simonet, B., & Valcárcel, M. (2013). A quartz crystal microbalance modified with carbon nanotubes as a sensor for volatile organic compounds. Sensors and Actuators B: Chemical, 186, 811–816. https://doi.org/10.1016/j.snb.2013.06.081.

Marqués, S., Carvalho, I., Henriques, M., Polcar, T., & Carvalho, S. (2015). PVD-grown antibacterial Ag-TiN films on piezoelectric PVDF substrates for sensor applications. Surface and Coatings Technology, 281, 117–124. https://doi.org/10.1016/j.surfcoat.2015.09.057.

Meyer, V. (1972). Einführung in die Verfahrenstechnik der Arzneiforschung. Von F. Gstirner. 4., neubearbeitete Auflage. 425 Seiten; Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1972. Preis: DM 78,-. Archiv der Pharmazie, 305(9), 715–716. https://doi.org/10.1002/ardp.19723050923.

Moore, G. (2013). Evaluation of Portable X-Ray Fluorescence (XRF) Analyzer for Zirconium-Thickness Measurements. https://doi.org/10.2172/1111501.

Online materials information resource - MatWeb (n.d.). Available at: https://www.matweb.com/. Accessed: June 26, 2022.

Rojo, O. P. (2019). Educational Simulation-based Toolbox for the Industry 4.0 Teaching Lab.

Sánchez-Juárez, C., Reyes-Duarte, D., Hernández-Guerrero, M., Morales-Ibarría, M., Campos-Terán, J., & Arroyo-Maya, I. (2019). α-Zein nanoparticles as delivery systems for hydrophobic compounds: Effect of assembly parameters. Revista Mexicana De Ingeniería Química, 19(2), 793-801. https://doi.org/10.24275/rmiq/Alim859.

Schalk, N., Tkadletz, M., & Mitterer, C. (2022). Hard coatings for cutting applications: Physical vs. chemical vapor deposition and future challenges for the coatings community. Surface and Coatings Technology, 429, 127949. https://doi.org/10.1016/j.surfcoat.2021.127949.

Somarin, Lopez, & Herrera (n.d.). Application of the Thermo Scientific Portable XRF Analyzer in Geochemical Exploration: An Example from the Francisco I. Madero Zn-Pb-Cu-(Ag) Deposit .... Bulletin of the Aquaculture Association of Canada.

Sósol-Fernández, R., Marín-Lizárraga, V., Rosales-Cruzaley, E., & Lapizco-Encinas, B. (2020). Cell assessment in microfluidic devices. Revista Mexicana De Ingeniería Química, 11(2), 227-248. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1544.

Ström, G., Hprnatowska, J., Changhong, X., & Terasaki, O. (2010). A novel SEM cross-section analysis of paper coating for separation of latex from void volume. Nordic Pulp & Paper Research Journal, 25(1), 107–113. https://doi.org/10.3183/npprj-2010-25-01-p107-113.

Valcárcel, M., & Cárdenas, S. (2005). Vanguard-rearguard analytical strategies. TrAC Trends in Analytical Chemistry, 24(1), 67–74. https://doi.org/10.1016/j.trac.2004.07.016.

Vetter, J., Burgmer, W., & Perry, A. J. (1993). Arc-enhanced glow discharge in vacuum arc machines. Surface and Coatings Technology, 59(1–3), 152–155. https://doi.org/10.1016/0257-8972(93)90074-x.

Vladár, A. (2016). Model-Based Scanning Electron Microscopy Critical-Dimension Metrology for 3D Nanostructures. Metrology and Diagnostic Techniques for Nanoelectronics, 3–30. https://doi.org/10.1201/9781315185385-3.

Vladimir SYASKO, A. P. (2014). Electromagnetic thickness measurement of coatings. Situation and prospects. In E. 2014) (Ed.), 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic (p. 10).

Xu, Y., Takai, M., & Ishihara, K. (2021). Functional coatings for lab-on-a-chip systems based on phospholipid polymers. Handbook of Modern Coating Technologies, 555–595. https://doi.org/10.1016/b978-0-444-63237-1.00016-4.

Published
2022-10-22
How to Cite
Herrera-Basurto, R., Mercader-Trejo, F., Domínguez-García, A., & Mondragón-Rodríguez, G. (2022). Evaluation of destructive and non-destructive measurement methods to determine the thickness of a titanium coating deposited by physical evaporation. Revista Mexicana De Ingeniería Química, 21(3), Mat2918. https://doi.org/10.24275/rmiq/Mat2918