Biodegradation of crude oil present in wastewaters: evaluation of biosurfactant production and catechol 2,3 dioxygenase activity

Biodegradación de petróleo crudo presente en aguas residuales: evaluación de la producción de biosurfactantes y actividad de catecol 2,3 dioxigenasa

  • M. Canul-Chan Universidad Veracruzana
  • B.A. Rodas-Junco
  • E. Uribe-Riestra
  • E. Houbron
Keywords: Bioremediation, Enzyme activity, hydrocarbons, Bioemulsifiers, Wastewater.


Water demand is increasing because of demographic and urban development in the last decades. Crude oil is an essential energy resource for many anthropogenic activities. However, it is associated with the generation of environmental pollution. In the present work, a native microbial consortium was used to study hydrocarbon biodegradation of crude oil and its potential use to remove organic pollutants in wastewater. The kinetic degradation of crude oil was analyzed to determine the production of biosurfactants and the enzyme activity of catechol 2,3 dioxygenase. The degradation of the hydrocarbon was determined by aromatic-hydrocarbons (96.11%) and total-hydrocarbons (74.23%). The maximum values of the biosurfactant production were evaluated by oil displacement (206.95 mg/L) and emulsification capacity (DO600 0.2895). The kinetic analysis showed that the complex mixture of hydrocarbons was the main responsible for generating the stress to synthesize biosurfactants through a native microbial consortium. However, the decrease in catechol 2,3 dioxygenase activity and biosurfactant production was related to the degradation of aromatic hydrocarbons. The microbial consortium was capable to produce biosurfactants during crude oil degradation, and it has a great potential to remove aromatic hydrocarbons present in wastewater.


Abdelhaleem, H. A. R., Zein, H. S., Azeiz, A., Sharaf, A. N., & Abdelhadi, A. A. (2019). Identification and characterization of novel bacterial polyaromatic hydrocarbon-degrading enzymes as potential tools for cleaning up hydrocarbon pollutants from different environmental sources. Environmental Toxicology and Pharmacology, 67, 108-116.

Adetunji, A. I., & Olaniran, A. O. (2019). Production and characterization of bioemulsifiers from Acinetobacter strains isolated from lipid-rich wastewater. 3 Biotech, 9(4), 151.

Alvarado, K., Niño, L., & Gelves, G. (2022). Kinetic modeling of biosurfactant production from crude oil using Bacillus subtilis cells. South African Journal of Chemical Engineering, 41, 176-181.

Bacosa, H. P., Suto, K., & Inoue, C. (2011). Preferential utilization of petroleum oil hydrocarbon components by microbial consortia reflects degradation pattern in aliphatic–aromatic hydrocarbon binary mixtures. World Journal of Microbiology and Biotechnology, 27(5), 1109-1117.

Canul-Chan, M., Sánchez-González, M., González-Burgos, A., Zepeda, A., Rojas-Herrera, R. (2018). Population structures shift during the biodegradation of crude and fuel oil by an indigenous consortium. International journal of environmental science and technology, 15(1), 1-16.

Chettri, B., & Singh, A. K. (2019). Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. Bioresource Technology, 294, 122190.

Chrzanowski, Ł., Owsianiak, M., Szulc, A., Marecik, R., Piotrowska-Cyplik, A., Olejnik-Schmidt, A. K., Staniewski, J., Lisiecki, P., Ciesielczyk, F., Jesionowski, T., Heipieper, H. J. (2011). Interactions between rhamnolipid biosurfactants and toxic chlorinated phenols enhance biodegradation of a model hydrocarbon-rich effluent. International Biodeterioration & Biodegradation, 65(4), 605-611.

Chrzanowski, L., Wick, L., Meulenkamp, R., Kaestner, M., Heipieper, H. (2009). Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E. Letters in applied microbiology, 48, 756-762.

Cisneros-de La Cueva, S., Martínez-Prado, M., Rojas-Contreras, J., Medrano-Roldán, H., Murillo-Martínez, M. (2014). Isolation and characterization of a novel strain, Bacillus sp KJ629314, with a high potential to aerobically degrade diesel. Revista Mexicana de Ingeniería Química, 13(2), 393-403.

Deive, F. J., Domínguez, A., Barrio, T., Moscoso, F., Morán, P., Longo, M. A., & Sanromán, M. A. (2010). Decolorization of dye Reactive Black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain). Journal of Hazardous Materials, 182(1), 735-742.

Dourado, R., Guedes, T. P., Bonifácio, T., Cavalcanti, T., Travassos, R., Vasconcelos, U. (2017). Determination of Microbial Contaminants Recovered From Brazilian Petrol Stations. Revista Mexicana de Ingeniería Química, 16(3), 983-990.

El-Sheshtawy, H. S., Mahdy, H. M., Sofy, A. R., & Sofy, M. R. (2022). Production of biosurfactant by Bacillus megaterium and its correlation with lipid peroxidation of Lactuca sativa. Egyptian Journal of Petroleum, 31(2), 1-6.

Elumalai, P., Parthipan, P., Huang, M., Muthukumar, B., Cheng, L., Govarthanan, M., & Rajasekar, A. (2021). Enhanced biodegradation of hydrophobic organic pollutants by the bacterial consortium: Impact of enzymes and biosurfactants. Environmental Pollution, 289, 117956.

Gam, I., & Ben Rejeb, J. (2021). Micro-economic analysis of domestic water demand: application of the pseudo-panel approach. Environmental Challenges, 4, 100118.

Hassan, H. A., & Aly, A. A. (2018). Isolation and characterization of three novel catechol 2,3-dioxygenase from three novel haloalkaliphilic BTEX-degrading Pseudomonas strains. International Journal of Biological Macromolecules, 106, 1107-1114.

Hegeman, G. D. (1966). Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. Journal of Bacteriology, 91(3), 1140-1154.

Houbron, E., Cruz-Carmona, E., Ponciano-Rosas, A., Rustrián-Portilla, E., Canul-Chan, M. (2021). Motor oil wastewater treatment in a packed bed bioreactor using immobilized native microbial consortium. Revista Mexicana de Ingeniería Química, 20(2), 761-773.

Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Dirisala, V. r., & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum, 4(3), 241-249.

Khatoon, K., & Malik, A. (2019). Screening of polycyclic aromatic hydrocarbon degrading bacterial isolates from oil refinery wastewater and detection of conjugative plasmids in polycyclic aromatic hydrocarbon tolerant and multi-metal resistant bacteria. Heliyon, 5(10), e02742-e02742.

Kumari, S., Regar, R. K., & Manickam, N. (2018). Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresource technology, 254, 174-179.

Lamichhane, S., Bal Krishna, K. C., & Sarukkalige, R. (2017). Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. Journal of Environmental Management, 199, 46-61.

Lin, J., & Milase, R. N. (2015). Purification and Characterization of Catechol 1,2-Dioxygenase from Acinetobacter sp. Y64 Strain and Escherichia coli Transformants. The Protein Journal, 34(6), 421-433.

Moscoso, F., Teijiz, I., Deive, F. J., Sanromán, M. A. (2012). Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresource Technology, 119, 270-276.

Mu, Y., Wang, G., & Yu, H.-Q. (2006). Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresource Technology, 97(11), 1302-1307.

Muthu, M., Ophir, Y., Macdonald, L. J., Vaidya, A., & Lloyd-Jones, G. (2018). Versatile catechol dioxygenases in Sphingobium scionense WP01T. Antonie van Leeuwenhoek, 111(12), 2293-2301.

Olapade, O. A., & Ronk, A. J. (2015). Isolation, Characterization and Community Diversity of Indigenous Putative Toluene-Degrading Bacterial Populations with Catechol-2,3-Dioxygenase Genes in Contaminated Soils. Microbial Ecology, 69(1), 59-65.

Ortega-de la Rosa, N., Gutiérrez-Rojas, M., Gimeno, M., Vázquez-Vázquez, J., & Huerta-Ocho, S. (2017). Novel exopolysaccharide produced by Acinetobacter bouvetii UAM25: production, characterization and PAHs bioemulsifying capability. Revista Mexicana de Ingeniería Química, 16(3), 721-733.

Padhi, S. K., & Gokhale, S. (2017). Benzene biodegradation by indigenous mixed microbial culture: Kinetic modeling and process optimization. International Biodeterioration & Biodegradation, 119, 511-519.

Peterson, G. L. (1977). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, 83(2), 346-356.

Popoola, L. T., & Yusuff, A. S. (2021). Optimization and characterization of crude oil contaminated soil bioremediation using bacteria isolates: Plant growth effect. South African Journal of Chemical Engineering.

Ra, T., Zhao, Y., & Zheng, M. (2019). Comparative study on the petroleum crude oil degradation potential of microbes from petroleum-contaminated soil and non-contaminated soil. International Journal of Environmental Science and Technology, 16(11), 7127-7136.

Rosales, E., Pérez-Paz, A., Vázquez, X., Pazos, M., & Sanromán, M. A. (2012). Isolation of novel benzo[a]anthracene-degrading microorganisms and continuous bioremediation in an expanded-bed bioreactor. Bioprocess and Biosystems Engineering, 35(5), 851-855.

Sharma, R., Singh, J., & Verma, N. (2018). Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatalysis and Agricultural Biotechnology, 16, 132-139.

Steliga, T. (2012). Role of Fungi in Biodegradation of Petroleum Hydrocarbons in Drill Waste. Polish Journal of Environmental Studies, 21(2).

Sun, S., Wang, Y., Zang, T., Wei, J., Wu, H., Wei, C., Qiu, G., Li, F. (2019). A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresource Technology, 281, 421-428.

Táncsics, A., Szabó, I., Baka, E., Szoboszlay, S., Kukolya, J., Kriszt, B., Márialigeti, K. (2010). Investigation of catechol 2, 3-dioxygenase and 16S rRNA gene diversity in hypoxic, petroleum hydrocarbon contaminated groundwater. Systematic and applied microbiology, 33(7), 398-406.

Tao, W., Lin, J., Wang, W., Huang, H., & Li, S. (2020). Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1. Ecotoxicology and Environmental Safety, 189, 109994.

Tavassoli, T., Mousavi, S. M., Shojaosadati, S. A., & Salehizadeh, H. (2012). Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel, 93, 142-148.

Ubani, O., Atagana, H. I., Selvarajan, R., & Ogola, H. J. O. (2022). Unravelling the genetic and functional diversity of dominant bacterial communities involved in manure co-composting bioremediation of complex crude oil waste sludge. Heliyon, 8(2), e08945.

Vázquez-Vélez, E., Monzón-Mendoza, J., Martínez, H., & Campillo, B. (2022). Synthesis of non-ionic, cationic, and anionic surfactant from coconut oil for remediation of diesel contaminated soil. Revista Mexicana de Ingeniería Química, 21(3), IA2776-IA2776.

Xia, M., Fu, D., Chakraborty, R., Singh, R., & Terry, N. (2019). Enhanced Crude Oil Depletion by Constructed Bacterial Consortium Comprising Bioemulsifier Producer and Petroleum Hydrocarbon Degraders. Bioresource Technology, 282.

Xie, Y., Yu, F., Wang, Q., Gu, X., & Chen, W. (2014). Cloning of catechol 2,3-dioxygenase gene and construction of a stable genetically engineered strain for degrading crude oil. Indian journal of microbiology, 54(1), 59-64.

You, J., Du, M., Chen, H., Zhang, X., Zhang, S., Chen, J., Cheng, Z., Chen, D., & Ye, J. (2018). BTEX degradation by a newly isolated bacterium: Performance, kinetics, and mechanism. International Biodeterioration & Biodegradation, 129, 202-208.

Yzquierdo-Ruíz, M., Torres-Sánchez, S., De la Garza-Rodríguez, I., Ojeda-Morales, M., Hernández-Nuñez, E., Lobato-García, C., Hernández-Rivera, M., Zurita-Macias-Valadez, M., & Morales-Bautista, C. (2022). Pre-evaluation of contaminated soil for oil field reactivation in Moloacan, Veracruz, Mexico. Revista Mexicana de Ingeniería Química, 21(2), IA2753-IA2753.

Zeng, X.-H., Du, H., Zhao, H.-M., Xiang, L., Feng, N.-X., Li, H., Li, Y.-W., Cai, Q.-Y., Mo, C.-H., & Wong, M.-H. (2020). Insights into the binding interaction of substrate with catechol 2, 3-dioxygenase from biophysics point of view. Journal of Hazardous Materials, 391, 122211.

Zrafi-Nouira, I., Guermazi, S., Chouari, R., Safi, N., Pelletier, E., Bakhrouf, A., Saidane-Mosbahi, D., & Sghir, A. (2009). Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil. Biodegradation, 20(4), 467-486.

How to Cite
Canul-Chan, M., Rodas-Junco, B., Uribe-Riestra, E., & Houbron, E. (2023). Biodegradation of crude oil present in wastewaters: evaluation of biosurfactant production and catechol 2,3 dioxygenase activity. Revista Mexicana De Ingeniería Química, 22(1), Bio2932.