Influence of power density and geometry of young cactus cladodes (Opuntia ficus-indica (L.) Mill.) on intermittent microwave drying kinetics

Keywords: Microwave intermittent drying, Cactus cladodes drying, Effective diffusion coefficient, Drying periods, Activation energy

Abstract

Due to its multiple uses, the production and consumption of nopal has increased worldwide in recent years. The influence of power density (60.3 to 538.9 W gdb-1) on the intermittent microwave drying of young cladodes, of different sizes, was studied. In general, all drying treatments showed a sigmoid shape and three drying periods: heating (I), constant rate (II) and falling rate (III). Empirical models were used to model drying kinetics. However, although they had a good fit (R2 from 0.965-0.998) they do not exactly represent the changes between drying periods. According to the structural evidence, water migrates from the inside of the cladode to the surface by the sides, where there is no cuticle (removed by the thorn quitting process). It was determined that the drying rate in period II depends exclusively on the power density applied and not on the cladode’s geometry. However, in period III the data obtained of effective diffusivity (Deff, 2.20x10-6 to 5.59x10-5 m2 s-1) showed that drying rate is affected by the size and thickness of cladodes.

Author Biography

T. Espinosa-Solares, Universidad Autónoma Chapingo

Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, Carretera México-Texcoco km 38.5, Texcoco, Estado de México, C. P. 56230, México.

References

Aruwa, C. E., Amoo, S. O., & Kudanga, T. (2018). Opuntia (Cactaceae) plant compounds, biological activities and prospects – A comprehensive review. Food Research International, 112, 328-344.

https://doi.org/10.1016/j.foodres.2018.06.047

Azimi-Nejadian, H., & Hoseini, S. S. (2019). Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer, 55(10), 2921-2930. https://doi.org/10.1007/s00231-019-02633-x

Barba, F. J., Garcia, C., Fessard, A., Munekata, P. E. S., Lorenzo, J. M., Aboudia, A., Remize, F. (2020). Opuntia Ficus Indica Edible Parts: A Food and Nutritional Security Perspective. Food Reviews International, 1-23.

https://doi.org/10.1080/87559129.2020.1756844

Barreto, I. M. A., Tribuzi, G., Marsaioli Junior, A., Carciofi, B. A. M., & Laurindo, J. B. (2019). Oil–free potato chips produced by microwave multiflash drying. Journal of Food Engineering, 261, 133-139.

https://doi.org/10.1016/j.jfoodeng.2019.05.033

Briki, S., Zitouni, B., Bechaa, B., & Amiali, M. (2019). Comparison of convective and infrared heating as means of drying pomegranate arils (Punica granatum L.). Heat and Mass Transfer, 55(11), 3189-3199.

https://doi.org/10.1007/s00231-019-02644-8

Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—A review. Food Research International, 52(1), 243-261.

https://doi.org/10.1016/j.foodres.2013.02.033

Çınkır, N. İ., & Süfer, Ö. (2020). Microwave drying of TURKISH red meat (watermelon) radish (Raphanus sativus L.): effect of osmotic dehydration, pre-treatment and slice thickness. Heat and Mass Transfer, 56(12), 3303-3313.

https://doi.org/10.1007/s00231-020-02930-w

Cruz-de la Cruz, L. L., Espinosa-Solares, T., Aguilar-Méndez, M. A., Guerra-Ramírez, D., & Hernández-Eugenio, G. (2020). Influence of microwave drying process on microstructure and thermodynamic properties of nopal cladodes. Ingeniería Agrícola y Biosistemas, 12(2), 115-130.

https://doi.org/10.5154/r.inagbi.2019.12.075www.chapingo.mx/revistas/inagbi

Dadali, G., & Özbek, B. (2008). Microwave heat treatment of leek: drying kinetic and effective moisture diffusivity. International Journal of Food Science & Technology, 43(8), 1443-1451.

https://doi.org/10.1111/j.1365-2621.2007.01688.x

Dai, J.-W., Xiao, H.-W., Zhang, L.-H., Chu, M.-Y., Qin, W., Wu, Z.-J., Han, D.-D., Li, Y.-L.,

Liu, Y.-W., Yin, P.-F. (2019). Drying characteristics and modeling of apple slices during microwave intermittent drying. Journal of Food Process Engineering, 42(6), e13212.

https://doi.org/10.1111/jfpe.13212

Dehghannya, J., Bozorghi, S., & Heshmati, M. K. (2018). Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes. Heat and Mass Transfer, 54(4), 929-954.

https://doi.org/10.1007/s00231-017-2202-5

Demiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, 53(5), 1817-1827.

https://doi.org/10.1007/s00231-016-1943-x

Dey, A., Singhal, S., Rasane, P., Kaur, S., Kaur, N., & Singh, J. (2019). Comparative kinetic analysis of convective and vacuum dried Opuntia ficus-indica (L.) Mill. cladodes. Research in Agricultural Engineering, 65(1), 1-6.

https://doi.org/10.17221/18/2018-RAE

Díaz-Ayala, F., Álvarez-García, G. d. S., & Simá-Moo, E. (2015). Drying kinetics of slices of nopal (Opuntia ficus indica) cladodes in a convective transversal flow dryer. Agrociencia, 49, 845-857. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952015000800003&nrm=iso

Dong, H., Dai, T., Liang, L., Deng, L., Liu, C., Li, Q., Liang, R., Chen, J. (2021). Physicochemical properties of pectin extracted from navel orange peel dried by vacuum microwave. LWT, 151, 112100.

https://doi.org/10.1016/j.lwt.2021.112100

El-Mostafa, K., El Kharrassi, Y., Badreddine, A., Andreoletti, P., Vamecq, J., El Kebbaj, M., Hammed, S., Latruffe, N., Lizard, G., Nasser, B., Cherkaoui-Malki, M. (2014). Nopal Cactus (Opuntia ficus-indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease. Molecules, 19(9), 14879-14901.

https://doi.org/10.3390/molecules190914879

El Broudi, S., Zehhar, N., Abdenouri, N., Boussaid, A., Hafidi, A., Bouamama, H., & Benkhalti, F. (2022). Investigation of drying kinetics and drying conditions on biochemical, sensory, and microstructural parameters of “Sefri” pomegranate arils (Punica granatum L. a Moroccan variety). Revista Mexicana De Ingeniería Química, 21(3), Alim2813.

https://doi.org/10.24275/rmiq/Alim2813

García-Valladares, O., Cesar-Munguía, A. L., López-Vidaña, E. C., Castillo-Téllez, B., Ortíz-Sánchez, C. A., Lizama-Tzec, F. I., & Domínguez-Niño, A. (2022). Effect by using a modified solar dryer on physicochemical properties of carambola fruit (Averrhoa Carambola L.). Revista Mexicana De Ingeniería Química, 21(1), Alim2650.

https://doi.org/10.24275/rmiq/Alim2650

Horuz, E., Bozkurt, H., Karataş, H., & Maskan, M. (2018). Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect. Heat and Mass Transfer, 54(2), 425-436.

https://doi.org/10.1007/s00231-017-2152-y

İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., & Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer, 54(7), 2101-2112.

https://doi.org/10.1007/s00231-018-2294-6

Inglese, P., Mondragon Jacobo, C., Nefzaoui, A., & Sáenz, C. (Eds.). (2018). Ecologia del cultivo, manejo y usos del nopal. Roma: Food and Agriculture Organization of the United Nations (FAO).

Jebri, M., Desmorieux, H., Maaloul, A., Saadaoui, E., & Romdhane, M. (2019). Drying of Salvia officinalis L. by hot air and microwaves: dynamic desorption isotherms, drying kinetics and biochemical quality. Heat and Mass Transfer, 55(4), 1143-1153.

https://doi.org/10.1007/s00231-018-2498-9

Karimi, S., Layeghinia, N., & Abbasi, H. (2021). Microwave pretreatment followed by associated microwave-hot air drying of Gundelia tournefortii L.: drying kinetics, energy consumption and quality characteristics. Heat and Mass Transfer, 57(1), 133-146.

https://doi.org/10.1007/s00231-020-02948-0

Liu, C., Grimi, N., Lebovka, N., & Vorobiev, E. (2019). Convective air, microwave, and combined drying of potato pre-treated by pulsed electric fields. Drying Technology, 37(13), 1704-1713.

https://doi.org/10.1080/07373937.2018.1536065

López, R., de Ita, A., & Vaca, M. (2009). Drying of prickly pear cactus cladodes (Opuntia ficus indica) in a forced convection tunnel. Energy Conversion and Management, 50(9), 2119-2126.

https://doi.org/10.1016/j.enconman.2009.04.014

Luo, G., Song, C., Hongjie, P., Li, Z., Xu, W., Raghavan, G. S. V., Jin, G. (2019). Optimization of the microwave drying process for potato chips based on the measurement of dielectric properties. Drying Technology, 37(11), 1329-1339.

https://doi.org/10.1080/07373937.2018.1500482

Medina-Torres, L., Gallegos-Infante, J. A., Gonzalez-Laredo, R. F., & Rocha-Guzman, N. E. (2008). Drying kinetics of nopal (Opuntia ficus-indica) using three different methods and their effect on their mechanical properties. LWT - Food Science and Technology, 41(7), 1183-1188.

https://doi.org/10.1016/j.lwt.2007.07.016

Monteiro, R. L., Gomide, A. I., Link, J. V., Carciofi, B. A. M., & Laurindo, J. B. (2020). Microwave vacuum drying of foods with temperature control by power modulation. Innovative Food Science & Emerging Technologies, 65, 102473.

https://doi.org/10.1016/j.ifset.2020.102473

Monteiro, R. L., Link, J. V., Tribuzi, G., Carciofi, B. A. M., & Laurindo, J. B. (2018). Microwave vacuum drying and multi-flash drying of pumpkin slices. Journal of Food Engineering, 232, 1-10.

https://doi.org/10.1016/j.jfoodeng.2018.03.015

Pereira, E., Silva, W., Gomes, J., Da, C., Silva, S., Dos, A., Costa, F. (2017). Empirical models in the description of prickly pear shoot (Nopal) drying kinetics. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 798.

https://doi.org/10.1590/1807-1929/agriambi.v21n11p798-802

Perucini-Avendaño, M., Nicolás-García, M., Jiménez-Martínez, C., Perea-Flores, M. d. J., Gómez-Patiño, M. B., Arrieta-Báez, D., & Dávila-Ortiz, G. (2021). Cladodes: Chemical and structural properties, biological activity, and polyphenols profile. Food Science & Nutrition, 9(7), 4007-4017.

https://doi.org/10.1002/fsn3.2388

Qiu, J., Kloosterboer, K., Guo, Y., Boom, R. M., & Schutyser, M. A. I. (2019). Conductive thin film drying kinetics relevant to drum drying. Journal of Food Engineering, 242, 68-75.

https://doi.org/10.1016/j.jfoodeng.2018.08.021

Quintero-García, M., Gutiérrez-Cortez, E., Bah, M., Rojas-Molina, A., Cornejo-Villegas, M. d. l. A., Del Real, A., & Rojas-Molina, I. (2021). Comparative Analysis of the Chemical Composition and Physicochemical Properties of the Mucilage Extracted from Fresh and Dehydrated Opuntia ficus indica Cladodes. Foods, 10(9), 2137. Retrieved from https://www.mdpi.com/2304-8158/10/9/2137

Ramadan, M. F., Moussa Ayoub, T. E., & Rohn, S. (2021). Introduction to Opuntia spp.: Chemistry, Bioactivity and Industrial Applications. In M. F. Ramadan, T. E. M. Ayoub, & S. Rohn (Eds.), Opuntia spp.: Chemistry, Bioactivity and Industrial Applications (pp. 3-11). Cham: Springer International Publishing.

Rattanadecho, P., & Makul, N. (2016). Microwave-Assisted Drying: A Review of the State-of-the-Art. Drying Technology, 34(1), 1-38. https://doi.org/10.1080/07373937.2014.957764

SADER. (2020). Crece en México el consumo y producción de nopal: Agricultura [Press release]. Retrieved from https://www.gob.mx/agricultura/prensa/crece-en-mexico-el-consumo-y-produccion-de-nopal-agricultura?idiom=es

Sáenz, C., & Berger, H. (2006). Utilización agroindustrial del nopal: FAO.

Shafiur-Rahman, M. (2020). Food Preservation: An Overview. In F. P. A. Overview (Ed.), (3rd ed., pp. 12). Handbook of Food Preservation: CRC Press.

Shu, B., Wu, G., Wang, Z., Wang, J., Huang, F., Dong, L., Su, D. (2020). The effect of microwave vacuum drying process on citrus: drying kinetics, physicochemical composition and antioxidant activity of dried citrus (Citrus reticulata Blanco) peel. Journal of Food Measurement and Characterization, 14(5), 2443-2452.

https://doi.org/10.1007/s11694-020-00492-3

SIAP. (2021). Anuario Estadístico de la Producción Agrícola. Retrieved from https://nube.siap.gob.mx/cierreagricola/. Retrieved Dec/18th/2021, from Servicio de Información Agroalimentaria y Pesquera. Gobierno de México https://nube.siap.gob.mx/cierreagricola/

Siebert, T., Gall, V., Karbstein, H. P., & Gaukel, V. (2018). Serial combination drying processes: A measure to improve quality of dried carrot disks and to reduce drying time. Drying Technology, 36(13), 1578-1591.

https://doi.org/10.1080/07373937.2017.1418374

Süfer, Ö., Sezer, S., & Demir, H. (2017). Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices. Journal of Food Processing and Preservation, 41(6), e13239.

https://doi.org/10.1111/jfpp.13239

Surendhar, A., Sivasubramanian, V., Vidhyeswari, D., & Deepanraj, B. (2019). Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. Journal of Thermal Analysis and Calorimetry, 136(1), 185-197.

https://doi.org/10.1007/s10973-018-7791-9

Tepe, T. K., & Tepe, B. (2020). The comparison of drying and rehydration characteristics of intermittent-microwave and hot-air dried-apple slices. Heat and Mass Transfer, 56(11), 3047-3057.

https://doi.org/10.1007/s00231-020-02907-9

Tlatelpa-Becerro, A., Rico-Martínez, R., Cárdenas-Manríquez, M., Urquiza, G., Castro-Gómez, L., Alarcón-Hernández, F., Montiel, E. (2022). Drying kinetics of Cecina from Yecapixtla using a forced flow indirect solar dryer. Revista Mexicana De Ingeniería Química, 21(3), Alim2813.

https://doi.org/10.24275/rmiq/Alim2750

Torres Salcido, J. G., & Cornejo Oviedo, F. M. (2018). Organización y liderazgo en la construcción de un Sistema Agroalimentario Localizado. Un estudio de caso sobre el nopal en Hidalgo, México. Estudios sociales (Hermosillo, Son.), 28, 0-0.

https://doi.org/10.24836/es.v28i51.496

Touil, A., Chemkhi, S., & Zagrouba, F. (2014). Moisture Diffusivity and Shrinkage of Fruit and Cladode of Opuntia ficus-indica during Infrared Drying. Journal of Food Processing, 2014, 175402.

https://doi.org/10.1155/2014/175402

Turkmen, F., Karasu, S., & Karadag, A. (2020). Effects of Different Drying Methods and Temperature on the Drying Behavior and Quality Attributes of Cherry Laurel Fruit. Processes, 8(7), 761. Retrieved from https://www.mdpi.com/2227-9717/8/7/761

Ventura-Aguilar, R. I., Bosquez-Molina, E., Bautista-Baños, S., & Rivera-Cabrera, F. (2017). Cactus stem (Opuntia ficus-indica Mill): anatomy, physiology and chemical composition with emphasis on its biofunctional properties. Journal of the Science of Food and Agriculture, 97(15), 5065-5073.

https://doi.org/10.1002/jsfa.8493

Zhang, M., Tang, J., Mujumdar, A. S., & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology, 17(10), 524-534.

https://doi.org/10.1016/j.tifs.2006.04.011

Zhu, A., & Shen, X. (2014). The model and mass transfer characteristics of convection drying of peach slices. International Journal of Heat and Mass Transfer, 72, 345-351.

https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.001

Zielinska, M., Zielinska, D., & Markowski, M. (2018). The Effect of Microwave-Vacuum Pretreatment on the Drying Kinetics, Color and the Content of Bioactive Compounds in Osmo-Microwave-Vacuum Dried Cranberries (Vaccinium macrocarpon). Food and Bioprocess Technology, 11(3), 585-602.

https://doi.org/10.1007/s11947-017-2034-9

Published
2022-12-18
How to Cite
Espinosa-Solares, T., & Domínguez-Puerto, R. (2022). Influence of power density and geometry of young cactus cladodes (Opuntia ficus-indica (L.) Mill.) on intermittent microwave drying kinetics. Revista Mexicana De Ingeniería Química, 22(1), Alim2965. https://doi.org/10.24275/rmiq/Alim2965
Section
Food Engineering