Functional properties and antioxidant activity of protein fractions of spirulina (Arthrospira maxima)
Abstract
In this research, spirulina of the species Arthrospira maxima, produced and donated by the company "NanoMex Espirulina" located in the city of Tlaxcala, Tlax., Mexico, was used. The proximal chemical composition of spirulina was determined. A sequential protein extraction was performed from frozen and macerated spirulina, initially a 0.9% (w/v) suspension of spirulina in dry weight was prepared in distilled water, subsequently, the residue was solubilized in saline solution (0.4 mM Na2SO4), then the residue was solubilized in water at pH 11 and finally the residue was solubilized in 70% ethanol; at each stage the solubilized protein was precipitated with 5% trichloroacetic acid and recovered by centrifugation. The fractions of albumins, globulins and glutelins were obtained, the prolamins were not. The antioxidant activity, the functional properties and the electrophoretic profile of the protein fractions obtained were determined. The albumin fraction presented the highest yield, so they are the ones with potential use in the food industry. Most of the proteins in spirulina are soluble in water and are of low molecular weight.
References
Affan, M.A., Lee, D.W., Al-Harbi, S.M., Kim, H.J., Abdulwassi, N.I., Heo, S.J., Oh, C., Park, H.S., Ma, C.W., Lee, H.Y. and Kang D.H. (2015a). Variation of Spirulina maxima biomass production in different depths of urea-used culture medium. Brazilian Journal of Microbiology 46, 991-1000. https://doi.org/10.1590/S1517-838246420140188
Affan, M.A., Lee, D.W., Jeon, S.M., Noh, J.H., Heo, S.J., Oh, C., Park, H.S., Khomayis, H. S.A. and Kang, D.H. (2015b). Bituminous coal and sodium hydroxide-pretreated seawater stimulates Spirulina (Arthrospira) maxima growth with decreased production costs. Aquaculture 436, 121-126. https://doi.org/10.1016/j.aquaculture.2014.10.036
Alvarenga, R.R., Rodrigues, P.B., Cantarelli, V.S., Zangeronimo, M.G., da Silva Junior, J.W., da Silva, L.F., dos Santos, L.M. and Pereira, L.S. (2011). Energy values and chemical composition of spirulina (Spirulina platensis) evaluated with broilers. Revista Brasileira de Zootecnia 40, 992-996. https://doi.org/10.1590/S1516-35982011000500008
Anvar, A. and Nowruzi, B. (2021). Bioactive properties of Spirulina: A review. Microbial Bioactives 4, 134-142. https://doi.org/10.25163/microbbioacts.412117B0719110521
AOAC. (2019). Official methods of analysis, 21st Edition. Washington, DC: Association of Official Analytical Chemists. 222.
Badui, D.S. (2019). Química de los alimentos. Editorial Pearson, México.
Bashir, S., Mian, S., Masood, B. and Muhammad, S. (2016). Functional properties and amino acid profile of Spirulina platensis protein isolates. Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences 59, 12-19. https://doi.org/10.52763/PJSIR.BIOL.SCI.59.1.2016.12.19
Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H. and Ghorbel, D. (2016). Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry 194, 1056-1063. https://doi.org/10.1016/j.foodchem.2015.08.133
Bhat, V.B. and Madyastha, K.M. (2001). Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochemical and Biophysical Research Communications 285, 262-266. https://doi.org/10.1006/bbrc.2001.5195
Bleakley, S. and Hayes, M. (2021). Functional and bioactive properties of protein extracts generated from Spirulina platensis and Isochrysis galbana T-Iso. Applied Science 11, 3964. https://doi.org/10.3390/app11093964
Böcker, L., Bertsch, P., Wenner, D., Teixeira, S., Bergfreund, J., Eder, S, Fischer, P. and Mathys, A. (2021). Effect of Arthrospira platensis microalgae protein purification on emulsification mechanism and efficiency. Journal of Colloid and Interface Science 584, 344-353. https://doi.org/10.1016/j.jcis.2020.09.067
Chen, J., Mu, T., Zhang, M., Goffin, D., Sun, H., Ma, M., Liu, X. and Zhang, D. (2018). Structure, physicochemical, and functional properties of protein isolates and major fractions from cumin (Cuminum cyminum) seeds. International Journal of Food Properties 21, 685-701. https://doi.org/10.1080/10942912.2018.1454467
Costa, J.A.V., Colla, L.M., Filho, P.D., Kabke, K. and Weber, A. (2002). Modelling of Spirulina platensis growth in fresh water using response surface methodology. World Journal of Microbiology and Biotechnology 18, 603-607. https://doi.org/10.1023/A:1016822717583
Deng, R. and Chow, T-J. (2010). Hypolipidemic, antioxidant, and anti-inflammatory activities of microalgae Spirulina. Cardiovascular Therapeutics 28, e33-e45. https://doi.org/10.1111/j.1755-5922.2010.00200.x
Ducat, D.C., Way, J.C. and Silver, P.A. (2011). Engineering cyanobacteria to generate high-value products. Trends in Biotechnology 29, 95-103. https://doi.org/10.1016/j.tibtech.2010.12.003
El-Moataaz, S., Ismael, H. and Aborhyem, S. (2019). Assessment of chemical composition of Spirulina platensis and its effect on fasting blood glucose and lipid profile in diabetic rats. Journal of High Institute of Public Health 49, 199-211. https://doi.org/10.21608/JHIPH.2019.64463
Ferreira-Hermosillo, A., Torres-Durán, P.V. and Juarez-Oropeza, M.A. (2010). Hepatoprotective effects of Spirulina maxima in patients with non-alcoholic fatty liver disease: a case series. Journal of Medical Case Reports 4, 103. https://doi.org/10.1186/1752-1947-4-103
Flores-Silva, P., Martínez-Yañez, R., Rodríguez-Huezo, M. and Alvarez-Ramirez, J. (2022). Nutritional protein quality and digestibility changes during food processing. Revista Mexicana de Ingeniería Química 21, Alim2748. https://doi.org/10.24275/rmiq/Alim2748
Gantar, M., Simović, D., Djilas, S., Gonzalez, W.W. and Miksovska, J. (2012). Isolation, characterization and antioxidative activity of C-phycocyanin from Limnothrix sp. strain 37-2-1. Journal of Biotechnology 159, 21-26. https://doi.org/10.1016/j.jbiotec.2012.02.004
Gershwin, M.E. and Belay, A. (2007). Spirulina in human nutrition and health: Editorial CRC press. Mexico. https://doi.org/10.1201/9781420052572
González-Palma, I., Escalona-Buendía, H.B., Ponce-Alquicira, E., Téllez-Téllez, M., Gupta, V.K., Díaz-Godínez, G. and Soriano-Santos, J. (2016). Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Frontiers in Microbiology 7, 1099. https://doi.org/10.3389/fmicb.2016.01099
Hirata, T., Tanaka, M., Ooike, M., Tsunomura, T. and Sakaguchi, M. (2000). Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. Journal of Applied Phycology 12, 435-439. https://doi.org/10.1023/A:1008175217194
Kabirullah, M. and Wills, R.B.H. (1982). Functional properties of acetylated and succinylated sunflower protein isolate. International Journal of Food Science and Technology 17, 235-249. https://doi.org/10.1111/j.1365-2621.1982.tb00179.x
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
Lee, J., Park, A., Kim, M.J., Lim, H.J., Rha, Y.A. and Kang, H.G. (2017). Spirulina extract enhanced a protective effect in type 1 diabetes by anti-apoptosis and anti-ROS production. Nutrients 9, 1363. https://doi.org/10.3390/nu9121363
Mahajan, A. and Ahluwalia, A. (2010). Effect of processing on functional properties of Spirulina protein preparations. African Journal of Microbiology Research 4, 55-60.
Martínez-Palma, N., Martínez-Ayala, A. and Dávila-Ortíz, G. (2015). Determination of antioxidant and chelating activity of protein hydrolysates from spirulina (Arthrospira maxima) obtained by simulated gastrointestinal digestion. Revista Mexicana de Ingeniería Química 14, 25-34. http://rmiq.org/ojs311/index.php/rmiq/article/view/1175/471
Ngakou, A., Ridine, W., Mbaïguinam, M. and Namba, F. (2012). Changes in the physico-chemical properties of Spirulina platensis from three production sites in Chad. Journal of Animal and Plant Sciences 13, 1811-1822. https://www.m.elewa.org/JAPS/2012/13.3/4.pdf
Nirmala, C., Prakash, V. and Venkataraman, L.V. (1992). Physico-chemical and functional properties of proteins from spray dried algae (Spirulina platensis). Food/Nahrung 36, 569-577. https://doi.org/10.1002/food.19920360608
Nisticò, D.M., Piro, A., Oliva, D., Osso, V., Mazzuca, S., Fagà, F.A., Morelli, R., Conidi, C., Figoli, A. and Cassano, A. (2022). A Combination of aqueous extraction and ultrafiltration for the purification of phycocyanin from Arthrospira maxima. Microorganisms 10, 308. https://doi.org/10.3390/microorganisms10020308
Paoletti, C., Vincenzini, M., Bocci, F. and Materassi, R. (1980). Composizione biochimica generale delle biomasse di Spirulina platensis e S. maxima. In: Prospettive della coltura di Spirulina in Italia. Pp. 111-125. Consiglio Nazionale delle Ricerche, Roma.
Piñero-Estrada, J.E., Bermejo-Bescós, P. and Villar del Fresno, A.M. (2001). Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco 56, 497-500. https://doi.org/10.1016/S0014-827X(01)01084-9
Ramírez-Moreno, L. and Olvera-Ramírez, R. (2006). Uso tradicional y actual de spirulina sp. (Arthrospira sp.). Interciencia 31, 657-663. https://www.redalyc.org/articulo.oa?id=33912009
Rodríguez-Mata, A., Flores-Colunga, G., Rangel-Peraza, J., Lizardi-Jiménez, M., and Amabilis-Sosa, L. (2019). Estimation of states in photosynthetic systems via chained observers: design for a tertiary wastewater treatment by using Spirulina maxima on photobiorreactor. Revista Mexicana de Ingeniería Química 18, 273-287. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Rodriguez
Sánchez, M., Bernal-Castillo, J., Rozo, C. and Rodríguez, I. (2003). Spirulina (Arthrospira): an edible microorganism: A review. Universitas Scientarum 8, 7-24. https://revistas.javeriana.edu.co/index.php/scientarium/article/view/4842
Seghiri, R., Kharbach, M. and Essamri, A. (2019). Functional composition, nutritional properties, and biological activities of Moroccan spirulina microalga. Journal of Food Quality 3707219, 1-11. https://doi.org/10.1155/2019/3707219
Sharoba, A., Morsy, O.M., EL-Desouky, A.I., Bahlol, H., Abdel-Mawla, E. (2014). Production and evaluation of extruded food products by using spirulina algae. Annals of Agriculture Science Moshtohor 52, 329-342. https://www.researchgate.net/publication/272498405
Solis-Méndez, A., Molina-Quintero, M., Oropeza de la Rosa, E., Cantú-Lozano, D. and Del Bianchi, V. (2020). Study of agitation, color and stress light variables on Spirulina platensis culture in a vertical stirred reactor in standard medium. Revista Mexicana de Ingeniería Química 19, 481-490. https://doi.org/10.24275/rmiq/Bio616
Sosa-Hernández, J.E., Romero-Castillo, K.D., Parra-Arroyo, L., Aguilar-Aguila-Isaías, M.A., García-Reyes, I.E., Ahmed, I., Parra-Saldivar, R., Bilal, M. and Iqbal, H.M.N. (2019). Mexican microalgae biodiversity and state-of-the-art extraction strategies to meet sustainable circular economy challenges: High-value compounds and their applied perspectives. Marine Drugs 17, 174. https://doi.org/10.3390/md17030174
Taton, A., Lis, E., Adin, D.M., Dong, G., Cookson, S., Kay, S.A., Golden, S.S. and Golden, J.W. (2012). Gene transfer in Leptolyngbya sp. strain BL0902, a cyanobacterium suitable for production of biomass and bioproducts. PloS One 7, e30901. https://doi.org/10.1371/journal.pone.0030901
Tomaselli, L. (1997). Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthospira (Spirulina) platensis. In: Spirulina platensis (Arthrospira): Physiology, cell-biology and Biotechnology, (Vonshak, A. eds.), Pp. 1-16. Taylor and Francis. London.
Vonshak, A. and Tomaselli, L. (2000). Arthrospira (Spirulina): Systematics and ecophysiology. In: The Ecology of Cyanobacteria, (B.A. Whitton and M. Potts, eds.), Pp. 505-522. Kluwer Academic Publishers, The Netherlands.
Wang, J.C. and Kinsella, J.E. (1976). Functional properties of novel proteins: Alfalfa leaf protein. Journal of Food Science 41, 286-292. https://doi.org/10.1111/j.1365-2621.1976.tb00602.x
Yang, J. and Sagis, L.M.C. (2021). Interfacial behavior of plant proteins — novel sources and extraction methods. Current Opinion in Colloid & Interface Science 56, 101499. https://doi.org/10.1016/j.cocis.2021.101499
Yucetepe, A., Saroglu, O., Bildik, F., Ozcelik, B. and Daskaya-Dikmen, C. (2018). Optimisation of ultrasound-assisted extraction of protein from Spirulina platensis using RSM. Czech Journal of Food Sciences 36, 98-108. https://doi.org/10.17221/64/2017-CJFS
Zhu, B., Shen, H., Li, Y., Liu, Q., Jin, G., Han, J., Zhao, Y. and Pan, K. (2020). Large-scale cultivation of spirulina for biological CO2 mitigation in open raceway ponds using purified CO2 from a coal chemical flue gas. Frontiers in Bioengineering and Biotechnology 7, 441. https://doi.org/10.3389/fbioe.2019.00441

Copyright (c) 2022 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.