Ethanol production from Mexican fruit wastes using a new Saccharomyces cerevisiae strain

  • L.C. Antonio-Narcizo
  • W.D. Pérez-Pérez
  • A. Tomasini
  • J.C. García-Martínez Escuela Nacional de Ciencias Biológicas, IPN
  • H.H. León-Santiestebán Universidad Autónoma Metropolitana Azcapotzalco
Keywords: ethanol, Saccharomyces cerevisiae, immobilization, damaged fruits, polyester fiberfill


In the Mexican croplands are generated large amounts of agroindustrial wastes that are usually not exploited. Damaged fruits wasted in the municipality of Tres Valles, Veracruz, are an excellent feedstock to produce ethanol, since do not need a sophisticated pretreatment and have high fermentable sugar concentrations. In this work is described ethanol production from damaged fruits by a new strain of Saccharomyces cerevisiae isolated from agave sp. wastes. Fermentations were carried out in batch and repeated batch cultures using biocatalysts formed by S. cerevisiae AP1 cells immobilized into alginate-coated polyester fiberfill. Biocatalysts showed a high fermentative capability at reducing sugar concentrations higher than 30 g L-1.  In batch cultures, with 32.58 g reducing sugar L-1, was produced up to 15.39 g ethanol L-1 at 16 h, with a volumetric productivity of 0.962 g L-1 h-1 and a fermentation efficiency of 94.77%. Instead in a 5-cycle repeated batch fermentation, with a reducing sugar content among 30 to 43 g L-1, ethanol production in each cycle was fast, higher than 15 g L-1, with fermentation efficiencies higher than 80%, and with volumetric productivities from 2.5 to 2.9 g L-1 h-1 after second cycle. Afterwards five cycles of repeated batch fermentation, total ethanol production was 95.41 g L-1 in just 44 h process.


Abdullah, S. S. S., Shirai, Y., Bahrin, E. K. and Hassan, M. A. (2015). Fresh oil palm frond juice as a renewable, non-food, non-cellulosic and complete medium for direct bioethanol production. Industrial Crops and Products, 63, 357-361.

Aldana-González, M., Gómez-Castro, F., Romero-Izquierdo, A., Conde-Mejía, C., Gutiérrez-Antonio, C. and Morales-Rodríguez, R. (2022). Supercritical biodiesel production: Feasibility of energy integration with a bioethanol production process. Revista Mexicana de Ingeniería Química, 21(1), Proc2534.

Alfenore, S., Molina-Jouve, C., Guillouet, S., Uribelarrea, J. L., Goma, G. and Benbadis, L. (2002). Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Applied Microbiology and Biotechnology, 60(1), 67-72.

Babu, N. K., Satyanarayana, B., Balakrishnan, K., Rao, T. R. and Rao, G. S. (2012). Study of Sugarcane Pieces as Yeast Supports for Ethanol Production from Sugarcane Juice and Molasses Using Newly Isolated Yeast from Toddy Sap. Mycobiology, 40(1), 35-41.

Balat, M., Balat, H. and Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551-573.

Bautista, K., Unpaprom, Y., Junluthin, P. and Ramaraj, R. (2022). Ethanol production from corn stalk juice by Saccharomyces cerevisiae immobilized yeast using a green method. Biomass Conversion and Biorefinery.

Bayrakci Ozdingis, A. G. and Kocar, G. (2018). Current and future aspects of bioethanol production and utilization in Turkey. Renewable and Sustainable Energy Reviews, 81, 2196-2203.

Carrillo-Nieves, D., Rostro Alanís, M. J., de la Cruz Quiroz, R., Ruiz, H. A., Iqbal, H. M. N. and Parra-Saldívar, R. (2019). Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewable and Sustainable Energy Reviews, 102, 63-74.

Casabar, J. T., Unpaprom, Y. and Ramaraj, R. (2019). Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery, 9(4), 761-765.

Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic acids research, 20(9), 2380-2380.

Demiray, E., Karatay, S. E. and Dönmez, G. (2018). Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Energy, 159, 988-994.

Demirbas, A. (2009). Biofuels securing the planet’s future energy needs. Energy Conversion and Management, 50(9), 2239-2249.

El-Dalatony, M. M., Kurade, M. B., Abou-Shanab, R. A. I., Kim, H., Salama, E.-S. and Jeon, B.-H. (2016). Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresource Technology, 219, 98-105.

Ellaiah, P., Prabhakar, T., Ramakrishna, B., Taleb, A. T. and Adinarayana, K. (2004). Production of lipase by immobilized cells of Aspergillus niger. Process Biochemistry, 39(5), 525-528.

Erkan Ünsal, S. B., Gürler Tufan, H. N., Canatar, M., Yatmaz, H. A., Turhan, İ. and Yatmaz, E. (2023). Ethanol production by immobilized Saccharomyces cerevisiae cells on 3D spheres designed by different lattice structure types. Process Biochemistry, 125, 104-112.

Firoozi, F. R., Raee, M. J., Lal, N., Ebrahiminezhad, A., Teshnizi, S. H., Berenjian, A. and Ghasemi, Y. (2022). Application of magnetic immboilization for ethanol biosynthesis using Saccharomyces cerevisiae. Separation Science and Technology, 57(5), 777-787.

Gardes, M. and Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118.

Jong-Sub, L., Eun-Hee, P., Jung-Wan, K. and Soo-Hwan, Y. (2013). Growth and Fermentation Characteristics of Saccharomyces cerevisiae NK28 Isolated from Kiwi Fruit. Journal of Microbiology and Biotechnology, 23(9), 1253-1259.

Klasson, K. T., Sturm, M. P. and Cole, M. R. (2022). Acid hydrolysis of sucrose in sweet sorghum syrup followed by succinic acid production using a genetically engineered Escherichia coli. Biocatalysis and Agricultural Biotechnology, 39, 102231.

Liu, Q., Zhao, N., Zou, Y., Ying, H., Liu, D. and Chen, Y. (2020). Feasibility Study on Long-Term Continuous Ethanol Production from Cassava Supernatant by Immobilized Yeast Cells in Packed Bed Reactor. Journal of Microbiology and Biotechnology, 30(8), 1227-1234.

Magrí, A. D., Magrí, A. L., Balestrieri, F., Sacchini, A. and Marini, D. (1997). Spectrophotometric micro-method for the determination of ethanol in commercial beverages. Fresenius' Journal of Analytical Chemistry, 357(7), 985-988.

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428.

Mondragón-Cortez, P., Herrera-López, E., Arriola-Guevara, E. and Guatemala-Morales, G. (2022). Application of Fourier Transform Infrared Spectroscopy (FTIR) in combination with Attenuated Total Reflection (ATR) for rapid analysis of the tequila production process. Revista Mexicana de Ingeniería Química, 21(3), Alim2806.

Nguyen, D. V., Sethapokin, P., Rabemanolontsoa, H., Minami, E., Kawamoto, H. and Saka, S. (2016). Efficient Production of Acetic Acid from Nipa (Nypa fruticans) Sap by Moorella thermoacetica (f. Clostridium thermoaceticum). International Journal of Green Technology, 2, 1-12.

Pacheco, A. M., Gondim, D. R. and Gonçalves, L. R. B. (2010). Ethanol Production by Fermentation Using Immobilized Cells of Saccharomyces cerevisiae in Cashew Apple Bagasse. Applied Biochemistry and Biotechnology, 161(1), 209-217.

Pinheiro, Á. D. T., Rocha, M. V. P., Macedo, G. R. and Gonçalves, L. R. B. (2008). Evaluation of Cashew Apple Juice for the Production of Fuel Ethanol. Applied Biochemistry and Biotechnology, 148(1), 227-234.

Plessas, S., Bekatorou, A., Koutinas, A. A., Soupioni, M., Banat, I. M. and Marchant, R. (2007). Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresource Technology, 98(4), 860-865.

Sarris, D. and Papanikolaou, S. (2016). Biotechnological production of ethanol: Biochemistry, processes and technologies []. Engineering in Life Sciences, 16(4), 307-329.

Seo, H.-B., Kim, H.-J., Lee, O.-K., Ha, J.-H., Lee, H.-Y. and Jung, K.-H. (2009). Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process. Journal of Industrial Microbiology and Biotechnology, 36(2), 285-292.

Shuler, M. L., Kargi, F. and DeLisa, M. (2017). Bioprocess engineering : basic concepts (3rd ed.). Prentice Hall, Boston.

SIAP. (2020). Estadística de la producción Agrícola 2020. Servicio de Información Agroalimentaria y Pesquera. Secretaría de Agricultura y Desarrollo Rural.

SIAP. (2022). Panorama Agroalimentario 2021. Conectando conocimiento ancestral y moderno para lograr la autosuficiencia alimentaria. Servicio de Información Agroalimentaria y Pesquera. Secretaría de Agricultura y Desarrollo Rural.

Singh, A., Sharma, P., Saran, A. K., Singh, N. and Bishnoi, N. R. (2013). Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renewable Energy, 50, 488-493.

Valdez-Vazquez, I., Acevedo-Benítez, J. A. and Hernández-Santiago, C. (2010). Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renewable and Sustainable Energy Reviews, 14(7), 2147-2153.

Vohra, M., Manwar, J., Manmode, R., Padgilwar, S. and Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2(1), 573-584.

Wann, S. R., Veazey, R. L. and Kaphammer, J. (1997). Activated charcoal does not catalyze sucrose hydrolysis in tissue culture media during autoclaving. Plant Cell, Tissue and Organ Culture, 50(3), 221-224.

White, T. J., Bruns, T., Lee, S. and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322.

Wildenborg, T. and Lokhorst, A. (2005). Introduction on CO2 Geological Storage - Classification of Storage Options. Oil & Gas Science and Technology, 60(3), 513-515.

Wu, F.-C., Wu, J.-Y., Liao, Y.-J., Wang, M.-Y. and Shih, I.-L. (2014). Cofermentation of glucose and galactose by a newly isolated Saccharomyces cerevisiae strain in free and immobilized forms. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2387-2394.

How to Cite
Antonio-Narcizo, L., Pérez-Pérez, W., Tomasini, A., García-Martínez, J., & León-Santiestebán, H. (2023). Ethanol production from Mexican fruit wastes using a new Saccharomyces cerevisiae strain. Revista Mexicana De Ingeniería Química, 22(1), Bio2977.

Most read articles by the same author(s)