Rheological and structural properties of complex coacervates of Amaranthus hypochondriacus protein-citrus pectin

  • L. Hernández-Rodriguez
  • K. García-de la Rosa
  • C. Lobato-Calleros
  • E. Aguirre-Mandujano
Keywords: Amaranthus hypochondriacus, coacervates, rheological properties, physicochemical characteristics, apparent viscosity


Complex coacervates were formed by electrostatic interaction between amaranth protein isolated (API) and citrus pectin (CP), at different API:CP weight ratio (3:1, 5:1, and 7: 1) and pH values (3.5 and 4.5). The physicochemical, rheological, and microstructural properties of the coacervates were investigated. The FTIR spectrum of the coacervates showed changes in the peaks at 1636 and 1153 cm-1 compared to the spectrum of API and CP, confirming the formation of the complex coacervates. A fine, structured, and compact structure was observed in the coacervates formed at pH 3.5; in contrast, a matrix composed of relatively large aggregates was observed for the coacervates formed at pH 4.5. Particle size of the coacervates increased as the API:CP weight ratio and pH increased, ranging the hydrodynamic diameter (Dh) from 1043 ± 39 to 2670 ± 30 nm. The apparent viscosity of the coacervates increased as the API:CP weight ratio increased and pH decreased. All the variations of complex coacervates presented G' values (storage modulus) higher than the G'' values (loss modulus), indicating a predominantly elastic rheological behavior. The knowledge generated could contribute to the application of the studied complex coacervates in the food industry.


Aceituno-Medina, M., Lopez-Rubio, A., Mendoza, S. and Lagaron, J.M. (2013). Development of novel ultrathin structures based in amaranth (Amaranthus hypochondriacus) protein isolate through electrospinning. Food Hydrocolloids 31, 289-298. https://doi.org/10.1016/j.lwt.2015.02.025

Ach, D., Briançon, S., Dugas, V., Pelletier, J., Broze, G. and Chevalier, Y. (2015). Influence of main whey protein components on the mechanism of complex coacervation with acacia gum. Colloids and Surfaces A: Physicochemical and Engineering Aspects 481, 367-374. https://doi.org/10.1016/j.colsurfa.2015.06.006

Anvari, M. and Chung, D. (2016). Dynamic rheological and structural characterization of fish gelatin-Gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids 60, 516-524. http://dx.doi. org/10.1016/j.foodhyd.2016.04.028

AOAC. (1996). Official Methods of Analysis. Association of Official Analytical Chemist. U.S.A.

Bolontrade, A.J., Scilingo, A.A. and Añón, C.M. (2013). Amaranth proteins foaming properties: Adsorption kinetics and foam formation-Part 1. Colloids and Surfaces B: Biointerfaces 105, 319-327. https://doi.org/10.1016/j.colsurfb.2014.10.061

Bosnea, L.A., Moschakis, T., Nigam, P.S. and Biliaderis, C.G. (2017). Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT - Food Science and Technology 77, 282-289. https://doi.org/10.1016/j.lwt.2016.11.056

Chang, P.G., Gupta, R., Timilsena, Y.P. and Adhikari, B. (2016). Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering 191, 58-66. http://dx.doi.org/10.1016/j.jfoodeng.2016.07.008

Chen, F.-P., Liu, L.-L. and Tang, C.-H. (2020) Spray-drying microencapsulation of curcumin nanocomplexes with soy protein isolate: Encapsulation, water dispersion, bioaccessibility and bioactivities of curcumin. Food Hydrocolloids 105, 105821. https://doi.org/10.1016/j.foodhyd.2020.105821

Comert, F., Malanowski, A.J., Azarikia, F., and Dubin, P.L. (2016). Coacervation and precipitation in polysaccharide-protein systems. Soft Matter 12, 4154-4161. https://doi.org/10.1039/C6SM00044D

Crispín-Isidro, G., Lobato-Calleros, C., Espinosa-Andrews, H., Alvarez-Ramirez, J. and Vernon-Carter, E.J. (2015). Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt. LWT - Food Science and Technology 62, 438-444. https://doi.org/10.1016/J.LWT.2014.06.042

Estrada-Girón, Y., Aguilar, J., Morales-del Rio, J., Valencia-Botin, A., Guerrero-Beltrán, J., Martínez-Preciado, A. H., Macías, E., Soltero, J., Solorza-Feria, J. and Fernández, V. (2014). Effect of moisture content and temperature, on the rheological, microstructural and thermal properties of masa (dough) from a hybrid corn (Zea mays sp.) variety. Revista Mexicana de Ingeniería Química 13(2), 429-446. http://rmiq.org/ojs311/index.php/rmiq/article/view/1335

Guo, Q., Su, J., Xie, W., Tu, X., Yuan, F., Mao, L. and Gao, Y. (2020). Curcumin-loaded pea protein isolate-high methoxyl pectin complexes induced by calcium ions: Characterization, stability and in vitro digestibility. Food Hydrocolloids 98, 105284. https://doi.org/10.1016/j.foodhyd.2019.105284

Hasanvand, E. and Rafe, A. (2018). Rheological and structural properties of rice bran protein-flaxseed (Linum usitatissimum L.) gum complex coacervates. Food Hydrocolloids, 83, 296-307. https://doi.org/10.1016/j.foodhyd.2018.05.019

Hasanvand, E. and Rafe, A. (2019). Development of vanillin/β-cyclodexterin inclusion microcapsules using flax seed gum-rice bran protein complex coacervates. International Journal of Biological Macromolecules 131, 60-66. https://doi.org/10.1016/j.ijbiomac.2019.03.066

Hernández-Marín, N.Y., Lobato-Calleros, C. and Vernon-Carter, E.J. (2013). Stability and rheology of water-in-oil-in-water multiple emulsions made with protein-polysaccharide soluble complexes. Journal of Food Engineering 119, 181-187. https://doi.org/10.1016/j.jfoodeng.2013.05.039

Hernández-Rodríguez, L., Lobato-Calleros, C., Pimentel-González, D.J. and Vernon-Carter, E.J. (2014). Lactobacillus plantarum protection by entrapment in whey protein isolate: κ-carrageenan complex coacervates. Food Hydrocolloids 36, 181-188. https://doi.org/10.1016/j.foodhyd.2013.09.018

Ifeduba, E.A. and Akoh, C.C. (2016). Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates. Food Chemistry 199, 524-532. https://doi.org/10.1016/j.foodchem.2015.12.011

Koupantsis, T., Pavlidou, E. and Paraskevopoulou, A. (2014). Flavour encapsulation in milk proteins - CMC coacervate-type complexes. Food Hydrocolloids 37, 134-142. https://doi.org/10.1016/j.foodhyd.2013.10.031

Lan, Y., Ohm, J.-B., Chen, B. and Rao, J. (2020). Phase behavior, thermodynamic and microstructure of concentrated pea protein isolate-pectin mixture: Effect of pH, biopolymer ratio and pectin charge density. Food Hydrocolloids 101, 105556. https://doi.org/10.1016/j.foodhyd.2019.105556

Li, Y. Zhang, X., Sun, N., Wang, Y. and Lin, S. (2018). Formation and evaluation of casein-gum arabic coacervates via pH dependent complexation using fast acidification. International Journal of Biological Macromolecules 120, 783-788 https://doi.org/10.1016/j.ijbiomac.2018.08.145

Liu, J., Shim, Y.Y., Shen, J., Wang, Y. and Reaney, M.J.T. (2017). Whey protein isolate and flaxseed (Linum usitatissimum L.) gum electrostatic coacervates: Turbidity and rheology. Food Hydrocolloids 64, 18-27. http://dx.doi.org/10.1016/j.foodhyd.2016.10.006

Liu, J., Shim, Y.Y., Wang, Y. and Reaney, M.J.T. (2015). Intermolecular interaction and complex coacervation between bovine serum albumin and gum from whole flaxseed (Linum usitatissimum L.). Food Hydrocolloids 49, 95-103. http://dx.doi.org/10.1016/j.foodhyd.2015.02.035

Lyklema, J. and Olphen, H.V. (1979). Terminology and Symbols in Colloid and Surface Chemistry Part 1.13. Definitions, Terminology and Symbols for Rheological Properties. Pure and Applied Chemistry 51(5), 1213-1218. https://doi.org/10.1351/pac197951051213

Martínez, E.N. and Añón, C. (1996). Composition and Structural Characterization of Amaranth Protein Isolates. An Electrophoretic and Calorimetric Study. Journal of Agricultural and Food Chemistry 44, 2523-2530.

Martínez-Velasco, A., Lobato-Calleros, C., Hernández-Rodríguez, B.E., Román-Guerrero, A., Alvarez-Ramirez, J. and Vernon-Carter, E.J. (2018). High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics Sonochemistry 44, 97-105. https://doi.org/10.1016/j.ultsonch.2018.02.007

Medina-Torres, N., Cuevas-Bernardino, J.C., Ayora-Talavera, T., Patrón-Vázquez, J.A., Rodríguez-Buenfil, I. and Pacheco, N. (2021). Changes in the physicochemical, rheological, biological, and sensorial properties of habanero chili pastes affected by ripening stage, natural preservative and thermal processing. Revista Mexicana de Ingeniería Química 20(1), 195-212. https://doi.org/10.24275/rmiq/Alim1768

Mession, J.-L., Assifaoui, A., Lafarge, C., Saurel, R. and Cayot, P. (2012). Protein aggregation induced by phase separation in a pea proteins-sodium alginate-water ternary system. Food Hydrocolloids 28, 333-343. https://doi.org/10.1016/j.foodhyd.2011.12.022

Monroy-Rodríguez, I., Gutiérrez-López, G.F., Hernández-Sánchez, H., López-Hernández, R. E., Cornejo-Mazón, M., Dorántes-Álvarez, L. and Alamilla-Beltrán, L. (2021). Surface roughness and textural image analysis, particle size and stability of microparticlesobtained by microfluidization of soy protein isolate aggregates suspensions. Revista Mexicana de Ingeniería Química 20(2), 785-805. https://doi.org/10.24275/rmiq/Alim2311

Moreno, B.R. (2005). Reología de Suspensiones Cerámicas. Editorial CSIC, Madrid.

Moschakis, T. and Biliaderis, C.G. (2017). Biopolymer-based coacervates: Structures, functionality and applications in food products. Current Opinion in Colloid and Interface Science 28, 96-109. https://doi.org/10.1016/j.cocis.2017.03.006

Motta, C., Castanheira, I., Gonzales, G.B., Delgado, I., Torres, D., Santos, M. and Matos, A.S. (2019). Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. Journal of Food Composition and Analysis 76, 58-65. https://doi.org/10.1016/j.jfca.2018.10.001

Muriel, M.J.L., Liu, J., Tan, Y., Zhou, H., Zhang, Z. and McClements, D.J. (2020). Characterization of electrostatic interactions and complex formation of ɣ-poly-glutamic acid (PGA) and ɛ-poly-ʟ-lysine (PLL) in aqueous solutions. Food Research International 128, 108781. https://doi.org/10.1016/j.foodres.2019.108781

Murillo-Martínez, M.M., Pedroza-Islas, R., Lobato-Calleros, C., Martínez-Férez, A. and Vernon-Carter, E.J. (2011). Designing W1/O/W2 double emulsions stabilized by protein-polysaccharide complexes for producing edible films: rheological, mechanical and water vapour properties. Food Hydrocolloids 25, 577-585. https://doi.org/10.1016/j.foodhyd.2010.06.015

Niu, F., Kou, M., Fan, J., Pan, W., Feng, Z.-J., Su, Y., Yang, Y. and Zhou, W. (2018). Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates. Food Chemistry 260, 1-6. https://doi.org/10.1016/j.foodchem.2018.03.141

Peña-Solis, K., Soriano-Santos, J., Sánchez, C. and Díaz-Godínez, G. (2023). Functional properties and antioxidant activity of protein fractions of spirulina (Arthrospira maxima). Revista Mexicana de Ingeniería Química 22(1). https://doi.org/10.24275/rmiq/Bio2967

Raei, M., Rafe, A. and Shahidi, F. (2018). Rheological and structural characteristics of whey protein-pectin complex coacervates. Journal of Food Engineering 228, 25-31. https://doi.org/10.1016/j.jfoodeng.2018.02.007

Ramírez-Santiago, C., Lobato-Calleros, C., Espinosa-Andrews, H., y Vernon-Carter, E. J. (2012). Viscoelastic properties and overall sensory acceptability of reduced-fat petit-Suisse cheese made by replacing milk fat with complex coacervate. Dairy Science & Technology 92, 383–98. https://doi.org/10.1007/s13594-012-0077-2

Rao, M.A. (1999). Rheology of fluid and semisolid foods: Principles and Applications. Aspen Publishers, Inc.

Rodrigues, M.Á.V., Marangon, C.A., Martins, V.C.A. and Plepis, A.M.G. (2021). Chitosan/gelatin films with jatobá resin: Control of properties by vegetal resin inclusion and degree of acetylation modification. International Journal of Biological Macromolecules 182, 1737-1745. https://doi.org/10.1016/j.ijbiomac.2021.05.160

Rousi, Z., Malhiac, C., Fatouros, D.G. and Paraskevopoulou, A. (2019). Complex coacervates formation between gelatin and gum Arabic with different arabinogalactan protein fraction content and their characterization. Food Hydrocolloids 96, 577-588. https://doi.org/10.1016/j.foodhyd.2019.06.009

Ru, Q., Wang, Y., Lee, J., Ding Y. and Huang Q. (2012). Turbidity and rheological properties of bovine serum albumin/pectin coacervates: Effect of salt concentration and initial protein/polysaccharide ratio. Carbohydrate Polymers, 88(3), 838-846. https://doi.org/10.1016/j.carbpol.2012.01.019.

Salminen, H. and Weiss, J. (2013). Effect of pectin type on association and pH stability of whey protein-pectin complexes. Food Biophysics 9(1), 29-38. https://doi.org/10.1007/s11483-013-9314-3

Souza, C.J.F. and Garcia-Rojas, E.E. (2015). Effects of salt and protein concentrations on the association and dissociation of ovalbumin-pectin complexes. Food Hydrocolloids 47, 124-129. https://doi.org/10.1016/j.foodhyd.2015.01.010

Stone, A.K., Teymurova, A. and Nickerson, M.T. (2014). Formation and functional attributes of canola protein isolate-gum arabic electrostatic complexes. Food Biophysics 9(3), 203-212. https://doi.org/10.1007/s11483-014-9334-7

Timilsena, Y.P., Wang, B., Adhikari, R. and Adhikari, B. (2016). Preparation and characterization of chia seed protein isolate-chia seed gum complex coacervates. Food Hydrocolloids 52, 554-563. https://doi.org/10.1016/j.foodhyd.2015.07.033

Tiwari, B.K. and Singh, N. (2012). Pulse Chemistry and Technology. Royal Society of Chemistry. London.

Trujillo-Ramírez, D., Lobato-Calleros, C., Román-Guerrero, A., Hernández-Rodríguez, L., Alvarez-Ramirez, J. and Vernon-Carter, E.J. (2018). Complexation with whey protein hydrolysate improves cacao pods husk pectin surface active and emulsifying properties. Reactive and Functional Polymers 123, 61-69. https://doi.org/10.1016/j.reactfunctpolym.2017.12.011

Vargas, A.S., Delgado-Macuila, R.J., Ruiz-Espinosa, H., Rojas-Lopez, M. and Amador-Espejo, G.G. (2021). High-intensity ultrasound pretreatment influence on whey protein isolate and its use on complex coacervation with kappa carrageenan: Evaluation of selected functional properties. Ultrasonics - Sonochemistry 70, 105340. https://doi.org/10.1016/j.ultsonch.2020.105340

Ventureira, J.L., Bolontrade, A., Speroni, F., David-Briand, E., Scilingo, A.A., Ropers, M. and Anton, M. (2012). Interfacial and emulsifying properties of Amaranth (Amaranthus hypochondriacus) protein isolates under different conditions of pH. LWT - Food Science and Technology 45, 1-7. https://doi.org/10.1016/j.lwt.2011.07.024

Wee, M.S., Nurhazwani, S., Tan, K.W., Goh, K.K., Sims, I.M. and Matia-Merino, L. (2014). Complex coacervation of an arabinogalactan-protein extracted from the Meryta sinclarii tree (puka gum) and whey protein isolate. Food Hydrocolloids 42, 130-138. https://doi.org/10.1016/j.foodhyd.2014.03.005

Xiong, W., Deng, Q., Li, J., Li, B. and Zhong, Q. (2020). Ovalbumin-carboxymethylcellulose complex coacervates stabilized high internal phase emulsions: Comparison of the effects of pH and polysaccharide charge density. Food Hydrocolloids 98, 105282. https://doi.org/10.1016/j.foodhyd.2019.105282

You, G., Liu, X.L. and Zhao, M.M. (2018). Preparation and characterization of hsian-tsao gum and chitosan complex coacervates. Food Hydrocolloids 74, 255-266. https://doi.org/10.1016/j.foodhyd.2017.08.00.

How to Cite
Hernández-Rodriguez, L., García-de la Rosa, K., Lobato-Calleros, C., & Aguirre-Mandujano, E. (2023). Rheological and structural properties of complex coacervates of Amaranthus hypochondriacus protein-citrus pectin. Revista Mexicana De Ingeniería Química, 22(1), Alim3003. https://doi.org/10.24275/rmiq/Alim3003
Food Engineering

Most read articles by the same author(s)