Evaluation of physicochemical, rheological, textural and thermal properties of Mexican manchego-type cheese manufactured from goat´s milk

  • A.M. Ortíz-Deleón Universidad Autónoma Chapingo, Universidad Autónoma Metropolitana
  • C. Ramírez-Santiago Universidad Autónoma Chapingo
  • O. Sandoval-Castilla Universidad Autónoma Chapingo
  • A. Román-Guerrero
  • E. Aguirre-Mandujano
Keywords: Goat milk, Mexican Manchego-type cheese, microstructure, rheological properties, thermal analysis, TPA


Cheeses made from goat’s milk have gained importance in some regions of Mexico, where their diversification of their use beyond traditional sweets has attracted the attention of scientists and food technologists. In this work, Mexican manchego-type cheeses made with goat´s milk (GC) at different stages of maturation (60 and 90 days) were subjected to physicochemical, texture (TPA), microstructure, rheological, and thermal characterization analysis. Comparisons with cheeses made with cow´s milk (CC, 60 and 90 days) were done. In general, GC showed lower texture values and viscoelastic properties, with higher melting capacity and lower resistance to deformation because of heat treatment, with respect to CC. In addition, differences were observed in the microstructure, texture, and thermal properties with respect to the maturation time and the type of milk used. The characteristics of the cheeses were influenced by the moisture content and the maturation time in the samples, thus decreasing the texture properties and thermal stability, as the moisture decreased and the maturation time increased. After analyzing the cheeses in the maturation time, valuable information can be obtained for the agroindustry, after defining what is the appropriate maturation time for the manchego-type cheese, made with goat's milk, to produce a structure that exhibits the rheological properties, texture and melting of greater acceptance by the consumer, for use in Mexican gastronomy.

Author Biographies

A.M. Ortíz-Deleón, Universidad Autónoma Chapingo, Universidad Autónoma Metropolitana

1Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, 56230, Texcoco, Estado de México, México.

2Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1ª Sección, Iztapalapa, Ciudad de México, México.

C. Ramírez-Santiago, Universidad Autónoma Chapingo

Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, 56230, Texcoco, Estado de México, México

O. Sandoval-Castilla, Universidad Autónoma Chapingo

Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, 56230, Texcoco, Estado de México, México

E. Aguirre-Mandujano

Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, 56230, Texcoco, Estado de México, México.


Aguilar-Raymundo, V.G., Ramírez-Murillo, J.I., and Barajas-Ramírez, J.A. (2022). Assessing the characteristics, and acceptance of queso fresco added with whey cheese. International Journal of Food Science and Technology, 57; 6038-6045. https://doi.org/10.1111/ijfs.15956

Aminifar M., Hamedi, M., Emam-Djomeh, Z., and Mehdinia, A. (2010). Microstructural, compositional and textural properties during ripening of Lighvan cheese, a traditional raw sheep cheese. Journal of Texture Studies, 41, 579-593. https://doi.org/10.1111/j.1745-4603.2010.00244.x

Andrade-Montemayor, H.M. (2017). Producción de caprine en México. VIII Foro Nacional del caprine: Tierras Caprino, International Goat Association, 18, Pp. 24. Available: https://www.iga-goatworld.com/blog/produccion-de-caprino-en-mexico Accessed: July 13, 2022.

AOAC. (2019). Official Methods of Analysis, 21st. Edition. AOAC INTERNATIONAL, Rockville, MD.

Bontinis, T. G., Mallatou, H., Alichanidis, E., Kakouri, A., & Samelis, J. (2008). Physicochemical, microbiological and sensory changes during ripening and storage of Xinotyri, a traditional Greek cheese from raw goat's milk. International Journal of Dairy Technology, 61(3), 229-236. https://doi.org/10.1111/j.1471-0307.2008.00404.x

Bourne, M.C. (2002). Food texture and viscosity: Concept and measurement. Academic Press, New York, Pp. 182-186. https://doi.org/10.1016/B978-012119062-0/50000-0

Brickley, C.A., Auty, M.A.E., Piraino, P., and McSweeney, P.L.H. (2007). The effect of natural Cheddar cheese ripening on the functional and textural properties of the processed cheese manufactured therefrom. Food Chemistry and Toxicology, 72(9), 483-490. https://doi.org/10.1111/j.1750-3841.2007.00539.x

Burgos, L., Pece, N., and Maldonado, S. (2016). Proteolysis, texture and microstructure of goat cheese. International Journal of Engineering and Applied Sciences, 3(5), 14-19.

Butt, N.A., Ali, T.M., and Hasnain, A. (2020). Development of rice starch-based casein and fat mimetics and its application in imitation mozzarella cheese. Journal of Food Processing and Preservation, 44, 149228. https://doi.org/10.1111/jfpp.14928

Cais-Sokolińska D., Bierzuńska P., Kaczyński L. K., Baranowska H. M., and Tomaszewska-Gras J. (2017). Stability of texture, meltability and water mobility model of pizza-style cheeses from goat’s milk. Journal of Food Engineering, 222, 226-236. https://doi.org/10.1016/j.jfoodeng.2017.11.034

Claeys L.W., Verraes, C., Cardoen, S., De Block, J., Huyghebaert, A., Raes, K., Dewettinck K., and Herman, L. (2014). Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control, 42, 188-201. https://doi.org/10.10167j.foodcont.2014.01.045

Codex Alimentarius. Milk and Milk Products. Available Online: https://www.fao.org/3/i2085e/i2085e00.pdf (Last accessed on 6 October 2022)

Darnay, L., Németh, Á., Koncz, K., Monspart-Sényi, J., Pásztor-Huszár, K., Friedrich, L., and Laczay, P. (2018). Effect of different O2/CO2 permeable foils on aging of semi-hard goat cheese. International Dairy Journal, 90, 114-118. https://doi.org/10.1016/j.idairyj.2018.11.010

D’Incecco, P., Limbo, S., Hogenboom, J., Rosi, V., Gobbi, A., and Pellegrino, L. (2020). Impact of extending hard-cheese ripening: A multiparameter characterization of parmigiano Reggiano cheese ripened up to 50 months. Foods, 9, 268. https://doi.org/10.3390/foods9030268

Everett, D.W. and Auty, M.A.E. (2017), Cheese structure and current methods of analysis. International Dairy Journal, 18, 759-773. https://doi.org/10.1016/j.idairyj.2008.03.012

FAO (2021). Dairy marketeview. Overviewof global dairy market developments in 2020. Available at: https://www.fao.org/3/cb4230en/cb4230en.pdf Accessed: July 13, 2022.

Ferrerira Soares Cabral, C., Bechara Elabras Veiga, L., Guimara ̌es Araújo, M. and Quiterio de Souza, S.L. (2020). Environmental life cycle assessment of goat cheese production in Brazil: a path towards sustainability. LWT, 129, 109550. https://doi.org/10.1016/j.lwt.2020.109550

Fitzsimons, S.M., Mulvihill, D.M. and Morris, E.R. (2007). Denaturation and aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry. Food Hydrocolloids, 21, 638-644. https://doi.org/10.1016/j.foodhyd.2006.07.007

Fox, P.F., Guinee, T.P., Cogan, T.M. and McSweeney, P.L.H. (2017). Cheese: structure, rheology and texture. In: Fundamentals of Cheese Science (edited by P.F. Fox, T.P. Guinee, T.M. Cogan & P.L.H. McSweeney). Pp. 475– 532. Boston, MA: Springer.

García-Valladares, O., López-Vidaña, E.C., Galindo-Luna, Y.R., Luna-Solano, G., Pilatowsky-Figueroa, I., and Domínguez-Niño, A. (2022). Effect of convective drying conditions on the physicochemical, microbiological, and thermophysical properties of cincho artisanal cheese. Revista Mexicana de Ingeniería Química, 21, Alim2652. https://doi.org/10.24275/rmiq/Alim2652

Gliguem, H., Lopez, C., Michon, C., Lesieur, P., and Ollivon, M. (2011). The viscoelastic properties of processed cheeses depend on their thermal history and fat polymorphism. Journal of Agricultural and Food Chemistry, 59, 3125–3134. https://doi.org/10.1021/jf103641f

González-Córdova, A.F., Yescas, C., Ortiz-Estrada, Á.M., De la Rosa-Alcaraz, M.A., Hernández-Mendoza, A., and Vallejo-Cordoba, B. (2016). Invited review: Artisanal Mexican cheeses. Journal of Dairy Science, 99(5), 3250-3262. https://doi.org/10.3168/jds.2015-10103

Guerra-Martínez, J.A., Montejano, J.G., and Martín-del-Campo, S.T. (2012). Evaluation of proteolytic and physicochemical changes during storage of fresh Panela cheese from Queretaro, Mexico and its impact in texture. CyTA- Journal of Food, 10(4), 296-305. https://doi.org/10.1080/19476337.2011.653791

Gulzar, N., Rafiq, S., Nadeem, M., Imran, M., Khalique, A., Muqada Sleem, I., & Saleem, T. (2019). Influence of milling pH and storage on quality characteristics, mineral and fatty acid profile of buffalo Mozzarella cheese. Lipids in Health and Disease, 18(1), 1-8. https://doi.org/10.1186/s12944-019-0976-9

Hosseini-Parvar, S.H., Matia-Merino, L., and Golding, M. (2015). Effect of basil seed gum (BSG) on textural, rheological and microstructural properties of model processed cheese. Food Hydrocolloids 43, 557-567. https://doi.org/10.1016/j.foodhyd.2014.07.015

International Dairy Federation. (2021). Cheese and varieties part II: Cheese styles. IDF Factsheet 18/2021. Available Online. http://fil-idf.org/wp-content/uploads/2021/02/Cheese-and-varieties-Part-2_-Cheese-styles-.pdf (Last accessed on 5 October 2022).

Islam, M., Alharbi M.A., Alharbi, N.K., Rafiq, S., Shahbaz, M., Murtaza, S., Raza, N., Farooq, U., Ali, M., Imran, M., and Ali, S. (2022). Effect of inulin on organic acids and microstructure of synbiotic cheddar-type cheese made from buffalo milk. Molecules, 27, 5137. https://doi.org/10.3390/molecules27165137

Jiménez-Fernández, M., Pérez-Tirado, D.A., Peredo-Lovillo, A., and Luna-Solano, G. (2021). Physicochemical characteristics and survivability of Lactobacillus paracasei encapsulated by a gum arabic-pectin mixture as wall material and added to fresh panela cheese. Revista Mexicana de Ingeniería Química, 20, Alim2551. https://doi.org/10.24275/rmiq/Alim2551

Junyusen, T., Ngampang, N., Sangmuang, A., Suthada S., and Chatchavathatri, N. (2017). The effects of inulin on the textural, thermal, and microstructural properties of reduced-fat cheese. Suranaree Journal of Science and Technology, 24; 23-30.

Kasapis, S. & Bannikova, A. (2017). Rheology and food microstructure. In: Advances in food rheology and its applications: Development in food rheology (J. Ahmed and S. Basu, eds.), Pp. 27-62. Woodhead Publishing, Cambridge, MA, USA. https://doi.org/10.1016/B978-0-12-823983-4.00011-X

Kováčová, M., Výrostková, J., Dudriková, E., Zigo, F., Semjon, B., and Regecová, I. (2021). Assessment of quality and safety of farm level produced cheeses from sheep and goat milk. Applied Sciences, 11, 3196. https://doi.org/10.3390/app11073196

Lara., G. and Alvarado, D. (2021). Dairy and products annual. In: Mexico: Dairy and Products Annual. United States Department of Agriculture, Report number MX2021-0039. Available at: https://fas.usda.gov/data/mexico-dairy-and-products-annual-7 (Last accessed: Oct 5th, 2022)

Lei, T. and Sun, D.W. (2019). Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review. Food Science and Technology, 88, 527-542. https://doi.org/10.1016/j.tifs.2019.04.013

Lima, I.S.S., Garcez, B.S., Alves, A.A., Aquino, F.C., Borges, L.S. and Carvalho, W.F. (2016). Fat protected and profile of fatty acids goat milk: A review. Revista Brasileira de Higiene e Sanidade Animal, 10, 830-840. https://doi.org/10.5935/1981-2965.20160068

Liu, H., Ming, X.X., and Dong, G.S. (2008). Comparison of full-fat and low-fat cheese analogues with or without pectin gel through microstructure, texture, rheology, thermal and sensory analysis. Food Science and Technology, 43, 1581-1592. https://doi.org/10.1111/j.1365-2621.2007.01616.x

Lobato-Calleros, C., Ramírez-Santiago, C., and Osorio-Santiago, V.J. (2002). Microstructure and texture of manchego cheese-like products made with canola oil, lipophilic and hydrophilic emulsifiers. Journal of Texture Studies, 33, 165-182. https://doi.org/10.1111/j.1745-4603.tb01343.x

Lobato-Calleros, C., Velázquez-Varela, J., Sánchez-García, J., and Vernon-Carter, E.J. (2003). Dynamic rheology of Mexican Manchego cheese-like products containing canola oil and emulsifier blends. Food Research International, 36(1), 81-90. https://doi.org/10.1016/S0963-9969(02)00111-4

Lu, Y., Shirashoji, N., and Lucey, J.A. (2007). Rheological, textural and melting properties of commercial samples of some of the different types of pasteurized processed cheese. Journal of Dairy Technology, 60(2): 74-80. https://doi.org/10.1111/j.1471-0307.2007.00314.x

Masotti, F., Battelli, G., and De Noni, I. (2012). The evolution of chemical and microbiological properties of fresh goat milk cheese during its shelf life. Journal of Dairy Science, 95(9), 4760-4767. https://doi.org/10.3168/jds.2011-5039

Mattice, K.D., and Marangoni, A.G. (2019). Fat crystallization and structure in bakery, meat, and cheese systems. In: Structure-function analysis of edible fats. Alejandro G. Marangoni (ed.), Academic Press and AOCS Press, U.K., Pp. 287-311. https://doi.org/10.1016/b978-0-12-814041-3.00010-1

Medina, M. and Nuñez, M. (2017). Cheeses from ewe and goat milk. In Cheese, fourth edition. Paul L.H. McSweeney, Patrick F. Fox, Paul D. Cotter, and David W. Everett. Academic Press, Elsevier, London, UK., Pp. 1069-1091. https://doi.org/10.1016/B978-0-12-417012-4.00041-7

Nájera, A.I., Nieto, S., Barron, L.J.R., and Albisu, M. (2021). A review of the preservation of hard and semi-hard cheeses: Quality and safety. International Journal of Environmental Research and Public Health, 18, 9789. https://doi.org/10.3390/ijerph18189789

Nieto-Arribas, P., Poveda, J.M., Seseña, S., Palop, Ll., and Cabezas, L. (2009). Technological characterization of Lactobacillus isolates from traditional Manchego cheese for potential use as adjunct starter cultures. Food Control, 20(12), 1092-1098. https://doi.org/10.1016/j.foodcont.2009.003.001

Ochoa-Flores, A.A., Hernández-Becerra, J.A., Velázquez-Martínez, J.R., Piña-Gutiérrez, J.M., Hernández-Castellano, L.E., Toro-Mujica, P., Chay-Canul, A.J., and Vargas-Bello-Pérez E. (2021). Chemical and fatty acid composition of Manchego type and Panela cheeses manufactured from either hair sheep milk or cow milk. Journal of Dairy Science, 104, 7457-7465. https://doi.org/10.3168/jds.2020.19301

Oštarić, F., Antunac, N., Cubric-Curik, V., Curik, I., Jurić, S., Kazazić, S., Kiš, M., Vinceković, M., Zdolec, N., Špoljarić, J., and Mikulec, N. (2022). Challenging sustainable and innovative technologies in cheese production: A review. Processes, 10, 529. https://doi.org/10.3390/pr10030529

Park, Y.W. (2011). Goat milk: Composition and characteristics. In Encyclopedia of Animal Science. Second edition. Duan E. Ullrey, Charlotte Kirk Baer, Wilson G. Pond (Eds.) CRC Press. Taylor & Francis Group, Boca Raton, FL, USA. Vol. 2, Pp. 537-540. https://doi.org/10.1081/E-EAS2-120045704

Pastorino, A.J., Dave, R.I., Oberg C.J., McMahon D.J. (2002). Temperature effect on structure-opacity relationships of nonfat Mozzarella cheese. Journal of Dairy Science, 85(9), 2106–2113. https://doi.org/10.3168/jds.S0022-0302(02)74288-4

Pulina, G., Milán, M.J., Lavín, M.P., Theodoridis, A., Morin, E., Capote, J., Thomas, D.L., Francesconi, A.H.D., and Caja, G. (2018). Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. Journal of Dairy Science, 8, 6715-6729. https://doi.org/10.3168/jds.2017-14015

Ramel, P.R., and Marangoni, A.G. (2017). Characterization of the polymorphism of milk fat within processed cheese products. Food Structure, 12, 15–25. https://doi.org/10.1016/j.foostr.2017.03.001

Ramírez-Navas, J.S. (2010). Propiedades funcionales de los quesos: Énfasis en quesos de pasta hilada. ReCiTeIA, 10(2), 72-97.

SAGARPA (2018). Crece la producción de leche en México: SAGARPA. Available at: https://www.gob.mx/agricultura/colima/articulos/crece-la-produccion-de-leche-en-mexico-sagarpa-158944?idiom=es. Accessed: July 13, 2022.

Sandoval-Castilla, O., Lobato-Calleros, C., Aguirre-Mandujano, E., and Vernon-Carter, E.J. (2004). Microstructure and textura of yogurt as influenced by fat replacers. International Dairy Journal, 14, 151-159. https://doi.org/10.1016/S0958-6946(03)00166-3

Sapna, R. and Sharmili, J. (2018). Acceleration of Swiss cheese ripening by microbial lipase without affecting its quality characteristics. Journal of Food Science and Technology, 56, 497-506. https://doi.org/10.1007/s13197-018-3482-6

Schädle, C.N., Eisner, P., and Bader-Mittermaier, S.B. (2020). The combined effects of different fat replacers and rennet casein on the properties of reduced-fat processed cheese. Journal of Dairy Science, 103, 3980-3993. https://doi.org/10.3168/jds.2019-17694

Schenkel, P., Hartmann, K. I., Samudrala, R., and Hinrichs, J. (2014). Characterization of commercial cheese regarding thermophysical properties and application of multivariate statistical analysis to elaborate product mapping. Journal of Texture Studies, 45, 440–451. https://doi.org/10.1111/jtxs.12095

Schenkel, P., Samudrala, R., and Hinrichs, J. (2013). The effect of adding whey protein particles as inert filler on thermophysical properties of fat-reduced semihard cheese type Gouda. Journal of Dairy Technology, 66(2), 220-230. https://doi.org/10.1111/1471-0307.12036

SIAP (2021). Anuario Estadístico para la Producción Ganadera. Servicio de Información Agroalimentaria y Pesquera. SAGARPA. Available at: http://nube.siap.gob.mx/cierre_pecuario/ Accessed: July 13, 2022

Smith, J.R., Vogt, S.J., Seymour, J.D., Carr, A.J., and Codd S.L. (2017). Probing water migration in Mozzarella cheese during maturation and heating utilizing magnetic resonance techniques. Journal of Food Engineering, 198, 1–6. https://doi.org/10.1016/j.jfoodeng.2016.11.010

Solhi, P., Azadmard-Damirchi S., Hesari J., and Hamishehkar H. (2020). Production of the processed cheese containing tomato poder and evaluation of its rheological, chemical and sensory characteristics. Journal of Food Science and Technology, 57, 2198-2205. https://doi.org/10.1007/s13197-020-04256-1

Soodam, K., Ong, L., Powell, I.B., Kentish, S.E., Gras, S.L. (2017). Effect of elevated temperature on the microstructure of full fat Cheddar cheese during ripening. Food Structure, 14: 8–16. https://doi.org/10.1016/j.foostr.2017.05.003

Tomaszewska-Gras, J., Cais-Sokolińska, D., Bierzuńska, P., Kaczyński, Ł.K., Walkowiak, K., and Baranowska, H.M. (2019). Behavior of water in different types of goat’s cheese. International Dairy Journal, 95, 18-24. https://doi.org/10.1016/j.idairyj.2019.02.015

Tunick, M.H., Van Hekken, D.L., Iandola S.K., and Tomasula, P.M. (2012). Characterization of Queso Fresco during storage at 4 and 10°C. Journal of Food Research, 1(1): 309-319. https://doi.org/10.5539/jfr.v1n1p308

Turkmen, N. (2017). The nutritional value and health benefits of goat milk components. In: Nutrients in Dairy and their Implication on Health and Disease, (R.W. Ronald, J.C. Robert, and V.R. Preedy, eds.), Pp. 441-449. Academic Press Elsevier, London, England.

Vallejo Córdoba, B. (2021). El caso de quesos industrializados en México. BM Editores. Available: https://bmeditores.mx/ganaderia/el-caso-de-quesos-industrializados-en-mexico/ Accessed: July 27, 2022.

Van Hekken, D.L., Tunick M.H., Renye, J.A. Jr., and Tomasul, P.M. (2017). Characterization of starter-free Queso Fresco made with sodium-potassium salt blendsover 12 weeks of 4 °C storage. Journal of Dairy Science, 100 (7), 5153-5166. https://doi.org/10.3168/jds.2016-12081

Vásquez, N., Magan, C., Oblitas, J., Chuquizuta, T., Avila-George, H., and Castro, W. (2018). Comparison between artificial neural network and partial least squares regression models for hardness modeling during the ripening process if Swiss-type cheese using spectral profiles. Journal of Food Engineering, 219, 8-15. https://doi.org/j.foodeng.2017.09.008

Vyhmeister, S., Geldsetzer-Mendoza, C., Medel-Marabolí, M., Fellenberg, A., Vargas-Bello-Pérez, E., and Ibáñez, R.A. (2019). Influence of using different proportions of cow and goat milk on the chemical, textural and sensory properties of Chanco-style cheese with equal composition. LWT, 108226. https://doi.org/10.1016/j.lwt.2019.05.124

Zady, C.G., Paul, A., Clement, K., Koffi E.K. (2019). Properties and mechanism of melted cheeses and cowangn-melted cheeses: A case study Mozzarella and Bread cheese (Juustoleipa). American Journal of Food Science and Technology, 7(3):94-98. https://doi.org/10.12691/ajfst-7-3-4

Zheng, H. (2019). Introduction: Measuring rheological properties of foods. In: Rheology of semisolid foods. Food Engineering Series (H.S. Joyner, ed.), Pp. 3-30. Springer Cham, Switzerland. https://doi.org/10.1007/978-3-030-27134-3_1

Zhu, D. and Damodaran, S. (2011). Composition, thermotropic properties, and oxidative stability of freeze-dried and spray-dried milk fat globule membrane isolated from cheese whey. Journal of Agricultural and Food Chemistry, 59, 8931-8938. https://doi.org/10.1021/jf201688w

How to Cite
Ortíz-Deleón, A., Ramírez-Santiago, C., Sandoval-Castilla, O., Román-Guerrero, A., & Aguirre-Mandujano, E. (2023). Evaluation of physicochemical, rheological, textural and thermal properties of Mexican manchego-type cheese manufactured from goat´s milk. Revista Mexicana De Ingeniería Química, 22(1), Alim3012. https://doi.org/10.24275/rmiq/Alim3012
Food Engineering

Most read articles by the same author(s)

1 2 > >>