Integration of extraction and acid hydrolysis processes as a strategy for better use and obtaining products from coffee residues
Abstract
The present study used a mixture of coffee processing residues to develop integrated processing for extracting high-value compounds with solvents and acid hydrolysis. The waste mixture comprised 55% bagasse, 40% husk, and 5% parchment. The physicochemical characterization showed 9.39 ± 0.37% of soluble fraction, and 90.61 ± 0.37% of the insoluble fraction, of which 60.41 ± 0.67% was cellulose, 6.44 ± 1.32% was hemicellulose and 23.21 ± 0.29% was lignin. In the first stage, the treatments of Organosolv and Organosolv assisted with ultrasonic (OAU) were applied at three particle sizes. The maximum yields of polyphenols were obtained with the smallest particle size and were 11.32 ± 0.63 mg GAE (gallic acid equivalents)/g DW (dry weight) for Organosolv and 10.12 ± 0.55 mg GAE/g DW for OAU. The best results for carbohydrate release were obtained with acid hydrolysis (0.5 % H2SO4) and OAU pretreatment. Principal component analysis indicated that the OAU treatment with hydrolysis at 15 psi was the best to obtain polyphenols, arabinose, and xylose.
References
Ahmed, M.A. and Choi, J.W. (2021). Characteristic features of lignin extracted with gamma valerolactone after anaerobic and sonication only treatments of pine saw dust to make thin film composites. Bioresource Technology Reports, 15, 100814. https://doi.org/10.1016/j.biteb.2021.100814
AIDER-Asociación para la investigación y desarrollo integral. (2013). Estudio de la composición química de la madera de diez especies maderables potenciales de bosques secundarios y primarios residuales at: www.itto.int/files/itto_project_db_input/2929/Technical/Technical report-Estudio de composición química.pdf. Accessed: November 10, 2022.
Al-dhabi, N.A., Ponmurugan, K. and Maran, P. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34, 206–213. https://doi.org/10.1016/j.ultsonch.2016.05.005
Álvarez Rodriguez, A., Pizarro Garcia, C. and Folgueras Díaz, M.B. (2012). Caracterización química de biomasa y su relación con el poder calorífico. Departamento de energía, Universidad de Oviedo, 1–12.
Ávila-Núñez, R., Rivas-Pérez, B., Hernández-Motzezak, R. and Chirinos, M. (2012). Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias, 12(2), 129–135.
Ballesteros, L.F., Teixeira, J.A. and Mussatto, S.I. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 7(12), 3493–3503. https://doi.org/10.1007/s11947-014-1349-z
Banu, J.R., Kavitha, S., Kannah, R.Y., Kumar, M.D., Atabani, A.E. and Kumar, G. (2020). Biorefinery of spent coffee grounds waste : Viable pathway towards circular bioeconomy. Bioresource Technology, 302, 122821. https://doi.org/10.1016/j.biortech.2020.122821
Bartholomew, D.J. (2010). Principal Components Analysis. In Internacional Encyclopedia of Education, 374–377. https://doi.org/10.1016/b978-0-08-044894-7.01358-0
Chandrasekara, A. (2018). Phenolic acids. In Encyclopedia of Food Chemistry, 535–545. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22395-0
Chang, R. (2010). Química (10th ed.). Mc Graw Hill.
Chiang, C., Chen, J. and Lin, J. (2020). Preparation of pore-size tunable activated carbon derived from waste coffee grounds for high adsorption capacities of organic dyes. Journal of Environmental Chemical Engineering, 8, 103929. https://doi.org/10.1016/j.jece.2020.103929
de Carvalho Oliveira, F., Srinivas, K., Helms, G. L., Isern, N.G., Cort, J.R., Gonçalves, A. R. and Ahring, B.K. (2018). Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource Technology, 257, 172–180. https://doi.org/10.1016/j.biortech.2018.01.041
Fehér, C. (2018). Novel approaches for biotechnological production and application of L-arabinose. Journal of Carbohydrate Chemistry, 37(5), 251–284. https://doi.org/10.1080/07328303.2018.1491049
Gabhane, J., Kumar, S. and Sarma, A.K. (2020). Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw. Renewable Energy, 154, 1304–1313. https://doi.org/10.1016/j.renene.2020.03.035
Geladi, P. and Linderholm, J. (2020). Principal Component Analysis. In Chemical and Biochemical Data Analysis (2nd ed., Vol. 9, Issue 2, pp. 40–42). Elsevier Inc. https://doi.org/10.1016/B978-0-12-409547-2.14892-9
Geremu, M., Tola, Y.B. and Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture, 1–6. https://doi.org/10.1186/s40538-016-0077-1
Guo, X.Y., Lv, Y.Q., Ye, Y., Liu, Z.Y., Zheng, X.Q., Lu, J.L., Liang, Y.R. and Ye, J.H. (2021). Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves. Food Chemistry, 339, 128088. https://doi.org/10.1016/j.foodchem.2020.128088
Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J. and Templeton, D. (2008). Preparation of Samples for Compositional Analysis: Laboratory Analytical Procedure (LAP) Issue Date: 8/06/2008. National Renewable Energy Laboratory. United States
Heinen, P.R., Betini, J.H.A. and Polizeli, M.L.T.M. (2019). Xylanases. Encyclopedia of Microbiology, 604–615. https://doi.org/10.1016/B978-0-12-809633-8.13127-9
Hikichi, S.E., Andrade, R.P., Dias, E.S. and Duarte, W.F. (2017). Biotechnological applications of coffee processing by-products. In Handbook of Coffee Processing By-Products: Sustainable Applications, Pp. 221–244. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811290-8.00008-6
Ho, N.W.Y., Ladisch, M.R., Sedlak, M., Mosier, N. and Casey, E. (2011). Biofuels from Cellulosic Feedstocks. In Comprehensive Biotechnology, Second Edition, Vol. 3, Pp. 51–62. https://doi.org/10.1016/B978-0-08-088504-9.00155-0
International Coffee Organization. (2020). Producción total por paises exportadores. In International Coffee Organization at: www.ico.org/historical/1990 onwards/PDF/1a-total-production.pdf
Janissen, B. and Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128, 110–117. https://doi.org/10.1016/j.resconrec.2017.10.001
Jeong, S.Y. and Lee, J.W. (2015). Hydrothermal Treatment. In Pretreatment of Biomass: Processes and Technologies, Pp. 61–74. Elsevier. https://doi.org/10.1016/B978-0-12-800080-9.00005-0
Montalvo, J., Flores del Pino, P.A., Visitación Figueroa, L. and Naveda Rengifo, R.A. (2019). Remoción de lignina en el pretratamiento de cascarilla de arroz por explosión con vapor. Revista de La Sociedad Química Del Perú, 85(3), 352–361. https://doi.org/10.37761/rsqp.v85i3.245
Kang, H., Choi, S., Hee, J., Kim, K., Song, Y. and Lee, H. (2020). Plasma jet assisted carbonization and activation of coffee ground waste. Environment International, 145, 106113. https://doi.org/10.1016/j.envint.2020.106113
Katzen, R. and Schell, D.J. (2008). Lignocellulosic Feedstock Biorefinery: History and Plant Development for Biomass Hydrolysis. In Biorefineries-Industrial Processes and Products: Status Quo and Future Directions, Vol. 1, Pp. 129–138. https://doi.org/10.1002/9783527619849.ch6
Laca, A., Laca, A. and Díaz, M. (2019). Hydrolysis: From cellulose and hemicellulose to simple sugars. Second and Third Generation of Feedstocks: The Evolution of Biofuels, 213–240. https://doi.org/10.1016/B978-0-12-815162-4.00008-2
Lu, F. and Ralph, J. (2010). Lignin. In Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, 1st ed., Pp. 169–207. Elsevier. https://doi.org/10.1016/B978-0-444-53234-3.00006-7
Ma, T., Peng, W., Liu, Z., Gao, T., Liu, W., Zhou, D., Yang, K., Guo, R., Duan, Z., Liang, W., Bei, W., Yuan, F. and Tian, Y. (2021). Tea polyphenols inhibit the growth and virulence of ETEC K88. Microbial Pathogenesis, 152, 104640. https://doi.org/10.1016/j.micpath.2020.104640
Manasa, V., Padmanabhan, A. and Appaiah, K.A.A. (2020). Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Management. https://doi.org/10.1016/j.wasman.2020.10.045
Mayanga-Torres, P.C., Lachos-Perez, D., Rezende, C.A., Prado, J.M., Ma, Z., Tompsett, G. T., Timko, M.T. and Forster-Carneiro, T. (2017). Valorization of coffee industry residues by subcritical water hydrolysis: Recovery of sugars and phenolic compounds. Journal of Supercritical Fluids, 120, 75–85. https://doi.org/10.1016/j.supflu.2016.10.015
Mondragón-Cortez, P.M., Herrera-López, E. J., Arriola-Guevara, E. and Guatemala-Morales, G.M. (2022). Application of Fourier Transform Infrared Spectroscopy (FTIR) in combination with Attenuated Total Reflection (ATR) for rapid analysis of the tequila production process. Revista Mexicana de Ingeniería Química, 21(3), Alim2806-Alim2806. https://doi.org/10.24275/rmiq/Alim2806
Murthy, P.S. and Madhava-Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition - A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005
Mussatto, S.I., Machado, E.M.S., Martins, S. and Teixeira, J.A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661–672. https://doi.org/10.1007/s11947-011-0565-z
Nguyen, Q.A., Cho, E.J., Lee, D.S. and Bae, H.J. (2019). Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds. Bioresource Technology, 272, 209–216. https://doi.org/10.1016/j.biortech.2018.10.018
Pérez-Cadena, R., Medina-Moreno, S.A., Martínez, A., Lizardi-Jiménez, M.A., Espinosa-Solares, T. and Téllez-Jurado, A. (2018). Effect of concentration of salts in ethanol production from acid hydrolysis of cladodes of Opuntia ficus indica var. Atlixco. Revista Mexicana de Ingeniería Química, 17(1), 349-364. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/PerezR
Pérez-Nájera, V., Lugo-Cervantes, E., Gutiérrez-Lomelí, M. and del Toro-Sánchez, C.L. (2013). Extracción de compuestos fenólicos de la cáscara de lima (Citrus limetta Risso) y determinación de su actividad antioxidante. Biotecnia, 15(3), 18. https://doi.org/10.18633/bt.v15i3.153
Pleissner, D., Neu, A., Mehlmann, K., Schneider, R., Puerta-Quintero, G. I. and Venus, J. (2016). Bioresource technology fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 218, 167–173. https://doi.org/10.1016/j.biortech.2016.06.078
Ramírez-Velasco, L., Armendáriz-Ruiz, M.A., Arrizon, J., Rodríguez-González, J.A. and Mateos-Díaz, J. C. (2016). Liberation of caffeic acid from coffee pulp using an extract with chlorgenate esterase activity of Aspergillus ochraceus produced by solid state fermentation. Revista Mexicana de Ingeniería Química, 15(2), 503-512.
R Core Team. (2022). R: A Language and Environment for Statistical Computing (4.2.1). at: www.r-project.org/
Ravindran, R., Desmond, C., Jaiswal, S. and Jaiswal, A.K. (2018). Optimisation of organosolv pretreatment for the extraction of polyphenols from spent coffee waste and subsequent recovery of fermentable sugars. Bioresource Technology Reports. https://doi.org/10.1016/j.biteb.2018.05.009
Ravindran, R., Jaiswal, S., Abu-Ghannam, N. and Jaiswal, A.K. (2017a). Evaluation of ultrasound assisted potassium permanganate pre-treatment of spent coffee waste. Bioresource Technology, 224, 680–687. https://doi.org/10.1016/j.biortech.2016.11.034
Ravindran, R., Jaiswal, S., Abu-Ghannam, N. and Jaiswal, A.K. (2017b). Two-step sequential pretreatment for the enhanced enzymatic hydrolysis of coffee spent waste. Bioresource Technology, 239, 276–284. https://doi.org/10.1016/j.biortech.2017.05.049
Sluiter, A., Hames, R., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2008). Determination of extractives in biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. Department of Energy. U.S.
Soria, A.C., Brokł, M., Sanz, M.L. and Martínez-Castro, I. (2012). Sample preparation for the determination of carbohydrates in food and beverages. In Comprehensive Sampling and Sample Preparation, Vol. 4, Pp. 213–243. Elsevier, Pawliszyn, Janusz. https://doi.org/10.1016/B978-0-12-381373-2.10135-8
Stoklosa, R.J. and Hodge, D.B. (2014). Chapter 4-Integration of (hemi)-cellulosic biofuels technologies with chemical pulp production. In Biorefineries Pp 73-100. Elsevier. https://doi.org/10.1016/B978-0-444-59498-3.00004-X
Syms, C. (2018). Principal components analysis. In Encyclopedia of Ecology, 2nd ed., Pp. 566–573. Elsevier Inc. https://doi.org/doi:10.1016/b978-0-12-409548-9.11152-2
Thoresen, P.P., Leonidas, M., Rova, U. and Christakopoulos, P. (2020). Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresource Technology, 306, 123189. https://doi.org/10.1016/j.biortech.2020.123189
United Nations. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. In Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/40155/24/S1801141_es.pdf
Volli, V., Gollakota, A.R.K. and Shu, C.M. (2021). Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS. Science of the Total Environment, 792, 148392. https://doi.org/10.1016/j.scitotenv.2021.148392
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H., Francois, R., Henry, L. and Müller, K. (2022). dplyr: A Grammar of DAta Manipulation (R package version 1.0.10). https://cran.r-project.org/package=dplyr
Zara, J., Yegres, F., Vargas, N., Morales, S. and Cubillan, L. (2017). Empleo de la Espectroscopia Infrarroja (FT-IR-ATR) como herramienta para la Caracterización del bagazo de caña proveniente de la Sierra Falconiana. Química Viva, 16(3), 17–24.
Zhao, X., Cheng, K. and Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815–827. https://doi.org/10.1007/s00253-009-1883-1

Copyright (c) 2023 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.