Respiro-fermentative metabolism in yeast cultivated in solid-state culture: The Crabtree effect and ethanol production

Keywords: Respiro-fermentative metabolism; Crabtree effect; solid-state culture; ethanol production.

Abstract

A strong inoculum in solid-state culture (SSC) is achieved by using a high-density, high-activity microbial population. To determine the best conditions for yeast propagation, the Crabtree effect was analyzed. Inoculum production was carried out in Erlenmeyer flasks with different designs (baffled, coiled and conventional) and filling volumes (20 and 40 %). A 20% filling volume resulted in better air diffusion, leading to improved yeast growth independently of the flask configuration. Yeasts have adapted to produce ethanol under aerobic conditions to compete with other microorganisms. With commercial baker's yeast, the highest ethanol production was achieved at the laboratory scale (195.70±17.25 g ethanol/kg dry matter [DM]). There was no difference in ethanol production between the tubular reactor (171.10±10.87 g ethanol/kg DM) and in the pilot batch bioreactor (165.03±9.90 g ethanol/kg DM) using S. cerevisiae yeast ITD00196 as inoculum. Crabtree-positive yeasts have potential for rapid ethanol production in organic waste fermentation without thermochemical or enzymatic pre-treatment by SSC in the laboratory and at pilot-scale.

References

Alamanou, D. G., Malamis, D., Mamma, D. and Kekos, D. (2015). Bioethanol from dried household food waste applying non-isothermal simultaneous saccharification and fermentation at high substrate concentration. Waste and Biomass Valorization. 6, 353-361. https://doi.org/10.1007/s12649-015-9355-6

Alexander, M. A. and Jeffries, T. W. (1990). Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeasts. Enzyme and Microbial Technology. 12, 2-19. https://doi.org/10.1016/0141-0229(90)90173-N

Bradley, R. L. Jr. (2010). Moisture and total solids analysis. In: Food analysis, (S. S. Nielsen, ed), Pp. 17-27. Springer, New York.

Büchs, J., (2001). Introduction to advantages and problems of shaken cultures. Biochemical Engineering Journal. 7, 91–98. https://doi.org/10.1016/S1369-703X(00)00106-6

Canabarro, N. I., Alessio, C., Foletto, E. L., Kuhn, R. C., Priamo, W. L. and Mazutti, M. A. (2017). Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor. Renewable Energy. 102, 9-14. https://doi.org/10.1016/j.renene.2016.10.026

Carmona, T. A., Jiménez, A., Fernández Lobato, M. (2002). Analysys of the Schwanniomyces occidentalis SWA2 gene promoter in Saccharomyces cerevisiae. FEMS Microbiology Letters. 207(1), 69-73.

https://doi.org/10.1111/j.1574-6968.2002.tb11030.x

Crabtree, H. G. (1929). Observation on the carbohydrate metabolism of tumors. Biochemical Journal. 23(3), 536-545. https://doi.org/10.1042/bj0230536

De Deken, R. H. (1966). The Crabtree effect: a regulatory system in yeast. Journal of General Microbiology. 44, 149-156. https://doi.org/10.1099/00221287-44-2-149

Díaz-Campillo, M., Urtíz, N., Soto, Ó., Barrio, E., Rutiaga, M., Páez, J., (2012). Effect of glucose concentration on the rate of fructose consumption in native strains isolated from the fermentation of Agave duranguensis. World Journal of Microbiology Biotechnology. 28, 3387–3391. https://doi.org/10.1007/s11274-012-1143-x

Estrada-Martínez, R., Favela-Torres, E., Soto-Cruz, N. O., Escalona-Buendía, H. B. and Saucedo-Castañeda, G. (2019). A mild thermal pre-treatment of the organic fraction of municipal wastes allows high ethanol production by direct solid-state fermentation. Biotechnology and Bioprocess Engineering. 24, 401-412. https://doi.org/10.1007/s12257-019-0032-7

Fiechter, A. and Seghezzi, W. (1992). Regulation of glucose metabolism in growing yeast cells. Journal of Biotechnology. 27, 27-45. https://doi.org/10.1016/0168-1656(92)90028-8

Gancedo, C. and Serrano, R. C. (1989). Energy yielding-metabolism. In: The Yeasts: Energy Yielding-Metabolism, (Rose A. H., Harrison J. S., eds), Pp. 205-259. Academic Press, London.

Gómora-Hernández, J. C., Carreño-de-León, M. del C., Cuellar-Robles, F., Flores-Alamo, N. (2022). Sugar production by dilute acid hydrolysis of oat bagasse with three different acids: kinetics and thermodynamics. Revista Mexicana de Ingeniería Química. 21(3), IA2822.

Hagman, A., Säll, T., Compagno, C. and Piškur, J. (2013). Yeast “Make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS ONE. 8(7): e68734. https://doi.org/10.1371/journal.pone.0068734

Hagman, A. and Piškur, J. (2015). A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast. PloS ONE. 10 (1): e0116942. https://doi.org/10.1371/journal.pone.0116942

Ingledew, W. M., (1987). Schwanniomyces: potential superyeast?. Critical Reviews in Biotechnology. 5(2), 159–176. https://doi.org/10.3109/07388558709086975

Karimi, S. and Karimi, K. (2018). Efficient ethanol production from kitchen and garden wastes and biogas from the residues. Journal of Cleaner Production. 187, 37-45. https://doi.org/10.1016/j.jclepro.2018.03.172

Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A. and Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering. 109, 1083-1087. https://doi.org/10.1002/bit.24370

Levenspiel, O. (1999). Chemical Reaction Engineering. Wiley, New York.

Loizidou, M., Alamanou, D. G., Sotiropoulos, A., Lytras, C., Mamma, D., Malamis, D. and Kekos, D. (2017). Pilot scale system of two horizontal rotating bioreactors for bioethanol production from household food waste at high solid concentration. Waste and Biomass Valorization. 8(5), 1709-1719. https://doi.org/10.1007/s12649-017-9900-6

López-Alcántara, R., Borges-Cu, J. L., Ramírez-Benítez, J. E., Garza-Ortiz, A., Núñez-Oreza, L. A., Hernández-Vázquez, O. H. (2022). Importance of the C/N-ratio on biomass production and antimicrobial activity from marine bacteria Pseudoalteromonas sp. Revista Mexicana de Ingeniería Química. 21(2), Bio2695. https://doi.org/10.24275/rmiq/Bio2695

Mahmoodi, P., Karimi, K. and Taherzadeh, M. J. (2018). Hydrothermal processing as pretreatment for efficient production of ethanol and biogas from municipal solid waste. Bioresource Technology. 261, 166-175. https://doi.org/10.1016/j.biortech.2018.03.115

Marín-Palacio, L. D., Gamboa-Suasnarvart, R. A., Valdez-Cruz, N. A., Servín-González, L., Córdova-Aguilar, M. S., Soto, E., Klöckner, W. Büchs, J., Trujillo-Roldán, M. A., (2014). The role of volumetric power input in the growth, morphology, and production of a recombinant glycoprotein by Streptomyces lividans in shake flasks. Biochemical Engineering Journal. 90, 224–233. https://doi.org/10.1016/j.bej.2014.06.010

Martínez-Valdez, F., Martínez-Ramírez, C., Martínez-Montiel, L., Favela-Torres, E., Soto-Cruz, N., Ramírez-Vives, F. and Saucedo-Castañeda, G. (2015). Rapid mineralisation of the organic fraction of municipal solid waste. Bioresource Technology. 180, 112-118. https://doi.org/10.1016/j.biortech.2014.12.083

Mazaheri, D., Shojaosadati, S. A., (2013). Mathematical models for microbial kinetics in solid-state fermentation: A review. Iranian Journal of Biotechnology. 11(3), 156–167.

Mohanty, S. K., Behera, S., Swain, M. R. and Ray, R. C. (2009). Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Applied Energy. 86(5), 640-644. https://doi.org/10.1016/j.apenergy.2008.08.022

Moon, H. C., Song, I. S., Kim, J. C., Shirai, Y., Lee, D. H., Kim, J. K., Chung, S. O., Kim, D. H., Oh, K. K. and Cho, Y. S. (2009). Enzymatic hydrolysis of food waste and ethanol fermentation. International Journal of Energy Research. 33, 164-172. https://doi.org/10.1002/er.1432

Moutsoglou, M. E., Dearden, A. C. (2020). Effect of the respiro-fermentative balance during yeast propagation on fermentation and wort attenuation. Journal of the Institute of Brewing.126(3), 289-297. https://doi.org/10.1002/jib.621

Postma, E., Verduyn, C., Scheffers, W. A. and van Dijken, J. P. (1989). Enzymatic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Applied Environmental Microbiology. 55, 468-477. https://doi.org/10.1128/aem.55.2.468-477.1989

Pronk, J. T., Yde Steensma, H., Van Dijken, J. P., (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast. 12, 1607–1633. https://doi.org/10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4

Reynoso-Cereceda, G., Garcia-Cabrera, R., Valdez-Cruz, A., Trujillo-Roldán, M., (2016). Shaken flasks by resonant acoustic mixing versus orbital mixing: mass transfer coefficient KLa characterization and Escherichia coli cultures comparison. Biochemical Engineering Journal. 105, 379–390. https://doi.org/10.1016/j.bej.2015.10.015

Rozpędowska, E., Hellborg, L, Ishchuk, O. P., Orhan, F., Galafassi, S., Woolfit, M., Compagno, C. and Piškur, J. (2011). Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nature Communications. 2, 302. https://doi.org/10.1038/ncomms1305

Ruíz-Leza, H. A., Rodríguez-Jasso, R. M., Rodríguez-Herrera, R., Contreras-Esquivel, J. C., and Aguilar, C. N. (2020). Bio-reactors desing for solid state fermentation. Revista Mexicana de Ingeniería Química, 6(1), 33-40.

Saucedo-Castañeda, G., Lonsane, B.K., Navarro, J.M., Roussos, S., Raimbault, M., (1992). Potential of using a single fermenter for biomass build-up, starch hydrolysis, and ethanol production. Applied Biochemistry and Biotechnology. 36, 47–61. https://doi.org/10.1007/BF02950774

Saucedo-Castañeda, G., Trejo-Hernández, M. R., Losane, B. K., Navarro, J. M., Roussos, S., Dufour, D. and Raimbault, M. (1994). On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentation. Process Biochemistry. 29, 13-24. https://doi.org/10.1016/0032-9592(94)80054-5

Sluiter, A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., and Croker D. (2011). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618. National Renewable Energy Laboratory. Golden, USA.

Tomás-Pejó, E., Oliva, J. M. and Ballesteros M. (2008). Realistic approach for full-scale bioethanol production from lignocellulose: A review. Journal of Scientific and Industrial Research. 67, 874-884.

Xin, F., Zhang, H. and Wong, W. (2013). Bioethanol production from horticultural waste using crude fungal enzyme mixtures produced by solid state fermentation. BioEnergy research. 6(3), 1030-1037. https://doi.org/10.1007/s12155-013-9330-7

Yu, J., Zhang, X. and Tan, T. (2008). Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Processing Technology. 89(11), 1056-1059. https://doi.org/10.1016/j.fuproc.2008.04.008

Zhang, K., Wells, P., Liang, Y., Love, J., Parker, D. A. and Botella, C. (2019). Effect of diluted hydrolysate as yeast propagation medium on ethanol production. Bioresource Technology. 271, 1-8. https://doi.org/10.1016/j.biortech.2018.09.080

Published
2023-03-13
How to Cite
Estrada-Martinez, R., Favela-Torres, E., Soto-Cruz, N., Saucedo-Castañeda, G., & Martínez-Valdez, F. (2023). Respiro-fermentative metabolism in yeast cultivated in solid-state culture: The Crabtree effect and ethanol production. Revista Mexicana De Ingeniería Química, 22(1), Bio3025. https://doi.org/10.24275/rmiq/Bio3025
Section
Biotechnology

Most read articles by the same author(s)

1 2 > >>