A comparative study of different poly(3-hexylthiophene)–carbon based hole transport layers on the stability of perovskite solar cells prepared under ambient conditions

  • C.F. Arias-Ramos Instituto de Energías Renovables, Universidad Nacional Autónoma de México
  • F. Hernández - Guzmán Instituto de Energías Renovables, Universidad Nacional Autónoma de México
  • J. Camacho-Cáceres Instituto de Energías Renovables, Universidad Nacional Autónoma de México
  • D.K. Becerra-Paniagua Instituto de Energías Renovables, Universidad Nacional Autónoma de México
  • W.R. Gallegos-Pérez Instituto de Energías Renovables, Universidad Nacional Autónoma de México
  • M.A. Millán-Franco Instituto de Energías Renovables, Universidad Nacional Autónoma de México
  • M.E. Nicho Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos
  • H. Hu Instituto de Energías Renovables, Universidad Nacional Autónoma de México
Keywords: perovskite solar cells, poly(3-hexylthiophene), reduced graphene oxide, carbon nanotube, composite polymer thin films.


Hole transport layers (HTLs) play an important role in efficiency and stability of perovskite solar cells (PSCs).  Most of the highly efficient PSCs use spiro-OMeTAD doped with Li-TFSI as HTLs, which has to be prepared under inert atmosphere, because the hygroscopic feature of the lithium salt deteriorates the stability of PSCs under ambient conditions. In this work, we report a comparative study of the electrical and morphological properties of different poly(3-hexylthiophene) (P3HT) thin films: pristine, doped with FeCl3, and composites with carbon nanotubes (CNT) or reduced graphene oxide (rGO). Although the electrical conductivity of P3HT films is found to increase with any of those modification methods, the photovoltaic performance of PSCs is highly dependent on the modification agent. P3HT:FeCl3 reduces the photocurrent density of PSCs, while the addition of rGO in P3HT improves charge extraction and stability of PSCs. Furthermore, the insertion of conductive carbon paint between P3HT and the metal contact maintains the original efficiency of non-encapsulated PSCs after continuous illumination for 30 min. It is concluded that carbon modifications in P3HT based HTL can improve the stability of perovskite solar cells totally fabricated under ambient conditions.


Alvarado-Tenorio, G., Cortina-Marrero, H.J., Nicho, M.E., Márquez Aguilar, P.A., Hu, H. (2016). Improvement of photovoltaic performance of inverted hybrid solar cells by adding single-wall carbon nano tubes in poly (3-hexylthiophene). Materials Science in Semiconductor Processing 56, 37– 42. doi: 10.1016/j.mssp.2016.07.018

Arenas, M.C., Mendoza, N., Cortina, H., Nicho, M.E., Hu, H. (2010). Influence of poly(3-octylthiophene) (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells. Solar Energy Materials & Solar Cells 94, 29-33. doi: 10.1016/j.solmat.2009.04.013

Arias-Ramos, C. F., Kumar, Y., Abrego-Martínez, P.G., Hu, H. (2020). Efficient and stable hybrid perovskite prepared at 60% relative humidity with a hydrophobic additive in anti-solvent. Solar Energy Materials & Solar Cells 215, 110625. doi: 10.1016/j.solmat.2020.110625

Becerra-Paniagua, D. K., Sotelo-Lerma, M., Hu, H. (2019). Highly oxidized and exfoliated graphene using a modified Tour approach. Journal of Materials Science: Materials in Electronics 30, 3973–3983. doi: 10.1007/s10854-019-00683-9

Becerra-Paniagua, D. K., Cabrera-German, D., Díaz-Cruz, E.B., Montiel-González, Z., Sotelo-Lerma, M., Hu, H. (2020). Dispersion degree and sheet spacing control of graphene products via oxygen functionalities and its effect on electrical conductivities of P3HT-graphene composite coatings. Journal of Materials Science: Materials in Electronics 31, 19623– 19637. doi: 10.1007/s10854-020-04489-y

Chu, Q.-Q., Ding, B., Peng, J., Shen, H., Li, X., Liu, Y., Li, C.-X., Li, C.-J., Yang, G.-J., White, T. P., Catchpole, K. R. (2019). Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. Journal of Materials Science & Technology 35, 987–993. doi: 10.1016/j.jmst.2018.12.025

Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., Schilfgaarde, M.v., Walsh, A. (2014). Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Letters 14, 2584−2590. doi: 10.1021/nl500390f

Ghoreishi, F. S., Ahmadi, V., Alidaei, M., Roghabadi, F. A., Samadpour, M., Poursalehi, R., Johansson, E. M. J. (2022). Enhancing the efficiency and stability of perovskite solar cells based on moisture-resistant dopant free hole transport materials by using a 2D-BA2PbI4 interfacial layer. Physical Chemistry & Chemical Physics 24, 1675 – 1684. doi: 10.1039/d1cp04863e

Cortina-Marrero, H. J., Nair, P.K., Hu, H. (2013). Conductive carbon paint as an anode buffer layer in inverted CdS/Poly(3-hexylthiophene) solar cells. Solar Energy 98, 196-202. doi: 10.1016/j.solener.2013.09.034

Green, M, Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X. (2021). Solar cell efficiency tables (Version 57). Progress in Photovoltaic: Research and Applications 29, 3–15. doi: 10.1002/pip.3371

Gu, W.-M., Jiang, K.-J., Li, F., Yu, G.-H. , Xu, Y., Fan, X.-H., Gao, C.-Y., Yang, L.-M., Song, Y. (2022). A multifunctional interlayer for highly stable and efficient perovskite solar cells based on pristine poly(3- hexylthiophene). Chemical Engineering Journal 444, 136644. doi: 10.1016/j.cej.2022.136644

Guo, Z., Jena, A. K., Takei, I., Ikegami, M., Ishii, A., Numata, Y., Shibayama, N., Miyasaka, T. (2021). Dopant-Free Polymer HTM-Based CsPbI2Br Solar Cells with Efficiency Over 17% in Sunlight and 34% in Indoor Light. Adv. Funct. Mater. 31, 2103614. doi: 10.1002/adfm.202103614

Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., Snaith, H. J. (2014). Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Letters 14, 5561−5568. doi: 10.1021/nl501982b

Hernández-Guzmán, F., Nicho-Díaz, M.E., Medrano-Solís, A., Altuzar-Coello, P. (2017). In-situ synthesis by Grignard Metathesis of poly(3-hexylthiophene) in presence of CdS and their properties. European Polymer Journal 90, 407–417. Doi: 10.1016/j.eurpolymj.2017.03.040

Jeong, M. J., Yeom, K. M., Kim, S. J., Jung, E. H., Noh, J. H. (2021). Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy & Environmental Science 14, 2419-2428. doi: 10.1039/d0ee03312j

Joshi, P.H., Zhang, L., Hossain, I.M., Abbas, H.A., Kottokkaran, R., Nehra, S.P., Dhaka, M., Noack, M., Dalal, V.L. (2016). The physics of photon induced degradation of perovskite solar cells. AIP Advances 6, 115114, doi: 10.1063/1.4967817

Jung, E. H., Jeon, N. J., Park, E. Y., Moon, C. S., Shin, T. J., Yang, T.-Y., Noh, J. H., Seo, J. (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511- 515. doi: 10.1038/s41586-019-1036-3

Kassem, H., Salehi, A., Kahrizi, M., Mirzanejad, H., Hedayati, A., Khorasani, B. (2022). Poly(N,N0-bis-4-butylphenyl-N,N0-biphenyl)benzidine as Interfacial Passivator for Dopant-Free P3HT Hole Transport Layer-Based Perovskite Solar Cell in Regular Mesoscopic Architecture. Energy Technologies. 10, 2100956. doi: 10.1002/ente.202100956

Kim, H.-S., Seo, J.-Y, Park, N.-G. (2016). Material and Device Stability in Perovskite Solar Cells. ChemSusChem 9, 2528 – 2540. doi: 10.1002/cssc.201600915

Kim, H.-S., Yang, B., Stylianakis, M. M., Kymakis, E., Zakeeruddin, S. M., Grӓtzel, M., Hagfeldt, A. (2020). Reduced Graphene Oxide Improves Moisture and Thermal Stability of Perovskite Solar Cells. Cell Reports Physical Science 1, 100053. doi: 10.1016/j.xcrp.2020.100053

Krishna, B.G, Ghosh, D.S., Tiwari, S. (2021). Progress in ambient air-processed perovskite solar cells: Insights into processing techniques and stability assessment. Solar Energy 224, 1369–1395, doi: 10.1016/j.solener.2021.07.002

Kwan, C.-P., Street, M., Mahmood, A., Echtenkamp, W., Randle, M., He, K., Nathawat, J., Arabchigavkani, N., Barut, B., Yin, S., Dixit R., Singisetti, U., Binek, C., Bird, J.P. (2019). Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates. AIP Advances 9, 055018. doi: 10.1063/1.5087832.

Li, N., Feng, A., Guo, X., Wu, J., Xie, S., Lin, Q., Jiang, X., Liu, Y., Chen, Z., Tao, X. (2022). Engineering the Hole Extraction Interface Enables Single-Crystal MAPbI3 Perovskite Solar Cells with Efficiency Exceeding 22% and Superior Indoor Response. Advanced Energy Materials 12, 2103241. doi: 10.1002/aenm.202103241

Loewe, R.S., Khersonsky, S.M., McCullough, R.D. (1999). A simple method to prepare head-to-tail coupled, regioregular poly(3-alkylthiophenes) using Grignard Metathesis. Advanced Materials 11, 250–253. doi: 10.1002/(SICI)1521-4095(199903)11:3<250::AID-ADMA250>3.0.CO;2-J

Nia, N. Y., Matteocci, F., Cina, L., Di Carlo, A. (2017). High-Efficiency Perovskite Solar Cell Based on Poly(3-Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer. ChemSusChem 10, 3854 – 3860. doi: 10.1002/cssc.201700635

Nia, N. Y., Zendehdel, M., Cina, L., Matteoccia, F., Di Carlo, A. (2018). A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure. Journal of Materials Chemistry A 6, 659–671. doi: 10.1039/c7ta08038g

Nia, N. Y., Lamanna, E., Zendehdel, M., Palma, A.L., Zurlo, F., Castriotta, L.A., Di Carlo, A. (2019). Doping Strategy for Efficient and Stable Triple Cation Hybrid Perovskite Solar Cells and Module Based on Poly(3-hexylthiophene) Hole Transport Layer. Small 15, 1904399. doi: 10.1002/smll.201904399.

Nia, N. Y., Bonomo, M., Zendehdel, M., Lamanna, E., Desoky, M.M.H., Paci, B., Zurlo, F., Generosi, A., Barolo, C., Viscardi, G., Quagliotto, P., Di Carlo, A. (2021). Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells. ACS Sustainable Chemical Engineering 9, 5061− 5073. doi: 10.1021/acssuschemeng.0c09015

Ono, L. K., Schulz, P., Endres, J. J., Nikiforov, G. O., Kato, Y., Kahn, A., Qi, Y. (2014). Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films. Journal of Physical Chemistry Letters. 5, 1374−1379. doi: 10.1021/jz500414m

Peng, J., Kremer, F., Walter, D., Wu, Y., Ji, Y., Xiang, J., Liu, W., Duong, T., Shen, H., Lu, T., Brink, F., Zhong, D., Li,L., Lee, O., Lem, C., Liu, Y., Weber, K.J., White, T.P., Catchpole, K.R. (2022). Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573-578. doi: 10.1038/s41586-021-04216-5

Schulz, P., Edri, E., Kirmayer, S., Hodes, G., Cahen, D., Kahn, A. (2014). Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy & Environmental Science 7, 1377-1381. doi: 10.1039/c4ee00168k

Sharma, R., Sharma, A., Agarwal, S., Dhaka, M.S. (2022). Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review. Solar Energy 244, 516-535. doi: 10.1016/j.solener.2022.08.001

Snaith, H.J., Grätzel, M. (2007). Light-Enhanced Charge Mobility in a Molecular Hole Transporter. Physical Review Letters 98, 177402. doi: 10.1103/PhysRevLett.98.177402

Torres-Herrera, D. M., Moreno-Romero, P. M. Cabrera-German, D., Cortina-Marrero, H. J. Sotelo-Lerma, M., Hu, H. (2020). Thermal co-evaporated MoOx:Au thin films and its application as anode modifier in perovskite solar cells. Solar Energy 206, 136–144. doi: 10.1016/j.solener.2020.05.105

Younas, M., Kandiel, T.K., Rinaldi, A., Peng, Q., Al-Saadi, A.A. (2021). Ambient-environment processed perovskite solar cells: A review. Materials Today Physics 21, 100557, doi: 10.1016/j.mtphys.2021.100557

Wu, G., Dong, X., Cui, G., Sun, R., Wu, X., Gu, M., Zuo, Z., Liu, Y. (2022). A facile strategy for high performance air-processed perovskite solar cells with dopant-free poly(3-hexylthiophene) hole transporter. Solar Energy 237, 153– 160. doi: 10.1016/j.solener.2022.03.063

Zhang, W., Wan, L., Fu, S., Li, X., Fang, J. (2020). Reducing energy loss and stabilising the perovskite/poly (3-hexylthiophene) interface through a polyelectrolyte interlayer. Journal of Materials Chemistry A 8, 6546-6554. doi: 10.1039/d0ta01860k

How to Cite
Arias-Ramos, C., Hernández - Guzmán, F., Camacho-Cáceres, J., Becerra-Paniagua, D., Gallegos-Pérez, W., Millán-Franco, M., Nicho, M., & Hu, H. (2023). A comparative study of different poly(3-hexylthiophene)–carbon based hole transport layers on the stability of perovskite solar cells prepared under ambient conditions. Revista Mexicana De Ingeniería Química, 22(1), Ener3030. https://doi.org/10.24275/rmiq/Ener3030
Energy Engineering