Phytoabsorption of heavy metals from leachates using the species Cyperus laxus and Chrysopogon zizanioides
Abstract
This study aimed to evaluate and compare the phytoremediation potential of Cyperus laxus and Chrysopogon zizanioides, exposed to a mixture of leachates containing heavy metals. C. laxus is a native species from Mexico and C. zizanioides is an introduced species. Exposure to the leachate was performed using concentration kinetics concerning exposure times (TE) (Control 1, Control 40, 1,7, 15, 30, and 40 days). For this purpose, a completely randomized two-factor design with a 2x7 arrangement in triplicate was performed. The data were analyzed by ANOVA followed by an LSD multiple range test. For the quantification of metals in leachate and plants, inductively coupled plasma atomic emission spectroscopy (ICP-OES) was used. Ten chemical elements (Al, As, Ba, Cr, Hg, Ni, Pb, Se, Tl, and Zn) were identified in leachate and plants. It was observed that C. laxus absorbed mostly Al, Ba, Cr, Cr, Hg, and Ni, while C. zizanioides absorbed As, Pb, Se, Tl, and Zn. In translocation factor (TF) calculations C. laxus translocated only As, whereas C. zizanioides translocated As>Tl>Ba>Cr>Ni, respectively.
References
Alloway, B. J. (2012). Sources of Heavy Metals and Metalloids in Soils. In: In: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability (Alloway, B, editor). Pp 11–50. 3rd edition. Dordrecht: Springer Netherlands. http://doi:10.1007/978-94-007-4470-7_2
Álvarez-Ayuso, E., Otones, V., Murciego, A., García-Sánchez, A. and Santa-Regina, I. (2013). Zinc, cadmium, and thallium distribution in soils and plants of an area impacted by sphalerite-bearing mine wastes. Geoderma 207–208, 25–34. http://doi.org/10.1016/j.geoderma.2013.04.033
ATSDR (2007). Toxicological profile for barium and barium compounds. U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry. Available at: https://www.atsdr.cdc.gov/toxprofiles/tp24.pdf. Accessed: August 16, 2021.
Aziz, S.Q., Aziz, H.A., Yusoff M.S., Bashir M.J.K. and Umar, M. (2010). Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. Journal of Environmental Management 91(12), 2608–2614. http://doi.org/10.1016/j.jenvman.2010.07.042
Banerjee, R., Goswami, P., Pathak, K. and Mukherjee, A. (2016). Vetiver grass: An environment clean-up tool for heavy metal contaminated iron ore mine-soil. Ecological Engineering 90, 25–34. http://doi.org/10.1016/j.ecoleng.2016.01.027
Bertea, C.M. and Camusso, W. (2002). Anatomy, biochemistry, and physiology. In: Vetiveria: The Genus Vetiveria (M. Massimo editor), Pp. 19-25. 1st ed. London: CRC Press; http://doi.org/10.4324/9780203218730
Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C. and Broll G. (2006). Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. International Journal of Phytoremediation 8(4), 273–284. http://doi.org/10.1080/15226510600992808
Brieger, G., Wells, J.R. and Hunter, R.D. (1992). Plant and animal species composition and heavy metal content in fly ash ecosystems. Water Air Soil Pollut 63(1–2), 87–103. http://doi.org/10.1007/bf00475624
Calder, G.V. and Stark, T.D. (2010). Aluminum Reactions and Problems in Municipal Solid Waste Landfills. Pract Period Hazard Toxic Radioact Waste Manage. 2010;14(4):258–265. http://doi.org/10.1061/(asce)hz.1944-8376.0000045
Calder, G. V. and Stark, T. D. (2010). Aluminum Reactions and Problems in Municipal Solid Waste Landfills. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 14(4), 258–265. http://doi.org/10.1061/(asce)hz.1944-8376.0000045
Cameron, R.E. (1992). A guide for site and soil description in hazardous waste site characterization. Environmental Protection Agency (EPA). Available at: https://nepis.epa.gov/Exe/ZyPDF.cgi/200097F6.PDF?Dockey=200097F6.PDF. Accessed: September 12, 2021.
Chaudhry, F. M., Wallace, A. and Mueller, R. T. (1977). Barium toxicity in plants. Communications in Soil Science and Plant Analysis 8(9), 795–797. http://doi.org/10.1080/00103627709366776
Cherry, D. S. and Guthrie, R. K. (1979). The uptake of chemical elements from coal ash and settling basin effluent by primary producers II. Relation between concentrations in ash deposits and tissues of grasses growing on the ash. Science of The Total Environment, 13(1), 27–31. http://doi.org/10.1016/0048-9697(79)90014-7
Dalton, P. A., Smith, R. J. and Truong, P. N. V. (1996). Vetiver grass hedges for erosion control on a cropped flood plain: hedge hydraulics. Agricultural Water Management 31(1-2), 91–104. http://doi.org/10.1016/0378-3774(95)01230-3
Davamani, V., Indhu Parameshwari, C., Arulmani, S., Ezra John, J. and Poornima, R. (2021). Hydroponic phytoremediation of paperboard mill wastewater by using vetiver (Chrysopogon zizanioides). Journal of Environmental Chemical Engineering 9(4), 105528. http://doi.org/10.1016/j.jece.2021.105528
De la Cruz-López C.A., Ramos-Arcos, S.A. and López-Martínez, S. (2018). Efecto de la adición de ácidos orgánicos sobre la bioacumulación de Plomo, Talio y Vanadio en Chrysopogon zizanioides creciendo sobre suelos contaminados de un relleno sanitario. Nova Scientia 10(21), 403–422. http://doi.org/10.21640/ns.v10i21.1582
De Moya-Sánchez, Á., Casierra-Martínez, H., Vargas-Ramírez, X. and Caselles-Osorio, A. (2021). Chromium and Zinc removal from synthetic industrial wastewater in pilot-scale constructed wetlands planted with Cyperus odoratus L. INGE CUC 17(2), http://doi.org/10.17981/ingecuc.17.2.2021.08
Delgadillo-López, A.E., González-Ramírez, C.A., Prieto-García, F., Villagómez-Ibarra, J.R. and Acevedo-Sandoval, O. (2011). Fitorremediación: una alternativa para eliminar la contaminación. Tropical and subtropical agroecosystems 14(2), 597–612.
Dickinson, N. Phytoremediation. (2017). In: Encyclopedia of Applied Plant Sciences (B. Thomas, B.G. Murray, D.J. Murphy, editors). Pp. 327–331. 2nd Edition. Oxford: Academic Press. http://doi.org/10.1016/B978-0-12-394807-6.00016-2
Drabæk I, Iverfeldt Å. (1992). Mercury. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp 257–286. Elsevier. http://doi.org/10.1016/s0167-9244(08)70109-4
El-Fadel, M., Findikakis, A. N. and Leckie, J. O. (1997). Environmental Impacts of Solid Waste Landfilling. Journal of Environmental Management 50(1), 1–25. http://doi.org/10.1006/jema.1995.0131
Escalante-Espinosa, E., Gallegos-Martínez, M. E., Favela-Torres, E. and Gutiérrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59(3), 405–413. http://doi.org/10.1016/j.chemosphere.2004.10.034
Frech, W. and Cedergren, A. (1992). Aluminium. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp. 451–473. Elsevier. http://doi.org/10.1016/s0167-9244(08)70114-8
Gad, S.C. and Pham, T. (2014). Thallium. In: Encyclopedia of Toxicology (P. Wexler, editor). Pp. 527–529. Third Edition. Oxford: Academic Press. http://doi.org/10.1016/B978-0-12-386454-3.00938-6
Gajski, G., Oreščanin, V. and Garaj-Vrhovac, V. (2012). Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia. Ecotoxicology and Environmental Safety 78, 253–259. http://doi.org/10.1016/j.ecoenv.2011.11.032
Ghosh, M., Paul, J., Jana, A., De, A. and Mukherjee, A. (2015). Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecological Engineering 74, 258–265. http://doi.org/10.1016/j.ecoleng.2014.10.011
Giraldo, E. (2001). Tratamiento de lixiviados de rellenos sanitarios: avances recientes. Revista de Ingeniería 14(8), 44–55.
Gupta, N., Gaurav, S. S. and Kumar, A. (2013). Molecular basis of aluminum toxicity in plants: a review. American Journal of Plant Sciences 4, 21-37. http://doi.org/10.4236/AJPS.2013.412A3004
Huang, R.Q., Gao, S.F., Wang, W.L., Staunton, S. and Wang, G. (2006). Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Science of The Total Environment 368(2-3), 531–541. http://doi.org/10.1016/j.scitotenv.2006.03.013
Hussein, M., Yoneda, K., Mohd-Zaki, Z., Amir, A. and Othman, N. (2020). Heavy Metals in Leachate, Impacted Soils and Natural Soils of Different Landfills in Malaysia: An Alarming Threat. Chemosphere 267, 128874. http://doi:10.1016/j.chemosphere.2020.128874
Ihnat, M. (1992). Selenium. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp. 475–515. Elsevier. http://doi:10.1016/s0167-9244(08)70115-x
Irgolic, K. J. (1992). Arsenic. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp. 287–350. Elsevier. http://doi:10.1016/s0167-9244(08)70110-0
Jang, Y.C. and Townsend, T. G. (2003). Leaching of Lead from Computer Printed Wire Boards and Cathode Ray Tubes by Municipal Solid Waste Landfill Leachates. Environmental Science & Technology 37(20), 4778–4784. http://doi.org/10.1021/es034155t
Jones, F., Bankiewicz, D. and Hupa, M. (2014). Occurrence and sources of zinc in fuels. Fuel 117, 763–775. http://doi:10.1016/j.fuel.2013.10.005
Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A. and Christensen, T. H. (2002). Present and Long-Term Composition of MSW Landfill Leachate: A Review. Critical Reviews in Environmental Science and Technology 32(4), 297–336. http://doi.org/10.1080/10643380290813462
Lamb, D. T., Matanitobua, V. P., Palanisami, T., Megharaj, M. and Naidu, R. (2013). Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite. Environmental Science & Technology, 47(9), 4670–4676. http://doi.org/10.1021/es302053d
Li, G., Hu, N., Ding, D., Zheng, J., Liu, Y., Wang, Y. and Nie, X. (2011). Screening of Plant Species for Phytoremediation of Uranium, Thorium, Barium, Nickel, Strontium and Lead Contaminated Soils from a Uranium Mill Tailings Repository in South China. Bulletin of Environmental Contamination and Toxicology 86(6), 646–652. http://doi.org/10.1007/s00128-011-0291-2
Lis, J., Pasieczna, A., Karbowska, B., Zembrzuski, W. and Lukaszewski, Z. (2003). Thallium in Soils and Stream Sediments of a Zn−Pb Mining and Smelting Area. Environmental Science & Technology 37(20), 4569–4572. http://doi.org/10.1021/es0346936
López-Martínez, S., Gallegos-Martínez, M. E., Pérez-Flores, L. J. and Gutiérrez-Rojas, M. (2008). Contaminated Soil Phytoremediation byCyperus LaxusLam. Cytochrome P450 Erod-Activity Induced by Hydrocarbonsin Roots. International Journal of Phytoremediation 10(4), 289–301. http://doi.org/10.1080/15226510802096069
López-Martínez S. (2013). Cyperaceas: ¿plantas mágicas o malezas invasoras? Ciencia, Tecnología e Innovación para el desarrollo de México 2(11), 18–21.
Madejón P. (2012). Thallium. In: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability (B.J. Alloway, editor). Pp. 543–549. 3rd edition. Dordrecht: Springer Netherlands. http://doi.org/10.1007/978-94-007-4470-7_23
Maffei M. (2002). Introduction to the Genus Vetiveria. In: Vetiveria: The Genus Vetiveria (Maffei M, editor). Pp. 1-18. 1st Edition. CRC Press. http://doi.org/10.4324/9780203218730
Marín-Garza, T., Gómez-Merino, F.C., Trejo-Téllez, L.I., Muñoz-Orozco, A., Tavitas-Fuentes, L., Hernández-Aragón, L., et al. (2010). Respuestas fisiológicas y nutrimentales de variedades de arroz a la concentración de aluminio. Revista fitotecnia Mexicana 33(1), 37–44.
Melato, F. A., Mokgalaka, N. S. and McCrindle, R. I. (2015). Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings. International Journal of Phytoremediation 18(5), 509–520. http://doi.org/10.1080/15226514.2015.1115963
Méndez-Novelo, R., Castillo-Borges, E., Sauri-Riancho, M.R.S., Quintal-Franco, C., Vallejos, G. and Jiménez-Mejía, B. (2004). Tratamiento fisicoquímico de los lixiviados de un relleno sanitario. Ingeniería 8(2), 155–163.
Méndez-Novelo, R.I., Cachon-Sandoval, E. and Sauri-Riancho, M.R. (2002). Influencia del material de cubierta en la composición de los lixiviados de un relleno sanitario. Ingeniería 6(2), 7–12.
Miller-Ihli, N. J. (1992). Chromium. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp. 373–404. Elsevier. http://doi:10.1016/s0167-9244(08)70112-4
Nogueirol, R. C., Monteiro, F. A. and Azevedo, R. A. (2015). Tropical soils cultivated with tomato: fractionation and speciation of Al. Environmental Monitoring and Assessment 187(4). http://doi.org/10.1007/s10661-015-4366-0
Peralta-Pérez, M. del R. and Volke-Sepúlveda, T. (2020). The antioxidant defense in plants. Revista Mexicana de Ingeniería Química 11(1), 75-88.
Pérez, A., Martínez, D., Barraza, Z. and Marrugo, J. (2016). Bacterias endófitas asociadas a los géneros Cyperus y Paspalum en suelos contaminados con mercurio. Revista UDCA Actualidad & Divulgación Científica 19(1), 67–76. http://doi.org/10.31910/rudca.v19.n1.2016.111
Petenello, M.C. and Feldman, S.R. (2012). Evaluación de la tolerancia a suelos contaminados con aceite diesel en especies vegetales con potencial biorremediador. Acta Biológica Colombiana 17(3), 589–598.
Poschenrieder, C., Gunsé, B., Corrales, I. and Barceló, J. (2008). A glance into aluminum toxicity and resistance in plants. Science of The Total Environment 400(1-3), 356–368. http://doi.org/10.1016/j.scitotenv.2008.06.003
Prieto-Méndez, J., González-Ramírez, C.A., Roman-Gutiérrez, A. and Prieto-García, F. (2009). Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems 10(1), 29–44.
Raab, A., Williams, P. N., Meharg, A. and Feldmann, J. (2007). Uptake and translocation of inorganic and methylated arsenic species by plants. Environmental Chemistry 4(3), 197. http://doi.org/10.1071/en06079
Ramírez-Cadavid J. D. (2018). Evaluación del vetiver (chrysopogon zizanioides) y la elefanta (pennisetum purpureum) en la caracterización de humedales artificiales para el tratamiento de aguas residuales domésticas. Revista Científica en Ciencias Ambientales y Sostenibilidad 4(1).
Ramos-Arcos, S. A., López-Martínez, S., Lagunas-Rivera, S., González-Mondragón, E.G., De La Cruz-Leyva, M.C. and Velázquez-Martínez, J.R. (2019). Phytoremediation of landfill leachate using vetiver (chrysopogon zizanioides) and cattail (Typha latifolia). Applied Ecology and Environmental Research 17(2), 2619–2630. http://doi.org/10.15666/aeer/1702_26192630
Reeves R, Baker A. Metal accumulating plants. (2000). In: Phytoremediation of toxic metal: Usings Plants to clean up the environment (I. Raskin and B.D. Ensley, editors). Pp. 193–229. New York: Jhon Wiley & Sons, Inc.
Roongtanakiat, N. and Chairoj P. (2001). Uptake Potential of Some Heavy Metals by Vetiver Grass. Agriculture and Natural Resources 35(1), 46–50.
Roongtanakiat, N., Tangruangkiat, S. and Meesat, R. (2007). Utilization of vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. Science Asia 33(4), 397. http://doi.org/10.2306/scienceasia1513-1874.2007.33.397
Rubio, C., González-Weller, D., Martín-Izquierdo, R.E., Revert, C., Rodríguez, I. and Hardisson, A. (2007). El zinc: oligoelemento esencial. Nutrición Hospitalaria 22(1), 101–107.
San-Pedro, L., Méndez-Novelo, R., Hernández-Núñez, E., Nájera-Aguilar, H. and Gutiérrez-Hernández, R. (2021). Fenton-adsorption process for leachates from two landfills (karstic-clays). Revista Mexicana De Ingeniería Química 20(2), 853-866. https://doi.org/10.24275/rmiq/IA2195
Schachtschneider, K., Chamier, J. and Somerset, V. (2017). Phytostabilization of metals by indigenous riparian vegetation. Water SA 43(2), 177–185. http://doi.org/10.4314/wsa.v43i2.01
SECOFI. (1980). Norma Mexicana, NMX-AA-003-1980. Aguas residuales: muestreo [Internet]. Secretaria de Comercio Y Fomento Industrial; 1980. Available at: https://www.gob.mx/cms/uploads/attachment/file/166762/NMX-AA-003-1980.pdf. Accessed: October 21, 2021.
SECOFI. (2006). Norma Mexicana, NMX-AA-132-SCFI-2006. Muestreo de Suelos para la Identificación Y la Cuantificación de Metales Y Metaloides, Y Manejo de la Muestra [Internet]. 2006. Available at: https://www.sinec.gob.mx/SINEC/Vista/Normalizacion/DetalleNMX.xhtml?pidn=N0FUSUs2aXVoVzhNZkNQZGpsN1NOQT09. Accessed: October 12, 2021.
Toneatti, M. and Rivera, N.R. (2006). Ensayos de Tolerancia al Aluminio de Bromus stamineus y Bromus lithobius Recolectados en el Sur de Chile. Información tecnológica 17(1), 9–17. http://doi.org/10.4067/S0718-07642006000100003
Torres-Rodríguez, D., Cumana, A., Torrealba, O. and Posada, D. (2010). Uso del vetiver para la fitorremediación de cromo en lodos residuales de una tenería. Revista Mexicana De Ciencias Agrícolas 1(2), 175–188.
Truong PNV, Foong YK, Guthrie M, Hung YT. (2010). Phytoremediation of Heavy Metal Contaminated Soils and Water Using Vetiver Grass. In: Environmental Bioengineering (L.K. Wang, J.H. Tay, S.T.L. Tay and Y.T. Hung, editors). Pp. 233–275. Totowa, NJ: Humana Press. http://doi.org/10.1007/978-1-60327-031-1_8
Valderrama-Ocoró, M.F., Chavarro-Guzmán, L.E., Osorio-Gómez, J.C. and Peña-Montoya, C.C. (2018). Estudio dinámico del reciclaje de envases pet en el Valle del Cauca. Revista Lasallista de Investigación 15(1), 67–74. http://doi.org/10.22507/rli.v15n1a6
Vallero, D.A. and Blight, G. (2019). The Municipal Landfill. In: Waste: A Handbook for Management (T.M. Letcher, D.A. Vallero, editors). Pp. 235–258. Second Edition. Elsevier. http://doi.org/10.1016/b978-0-12-815060-3.00012-8
Veldkamp, J.F. (1999). A revision of Chrysopogon Trin. including Vetiveria Bory (Poaceae) in Thailand and Malesia with notes on some other species from Africa and Australia. Austrobaileya 5(3), 503–533.
Viraraghavan, T. and Srinivasan, A. (2011). Thallium: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health 325–333. http://doi.org/10.1016/b978-0-444-52272-6.00643-7
Voegelin, A., Pfenninger, N., Petrikis, J., Majzlan, J., Plötze, M., Senn, A.-C., … Göttlicher, J. (2015). Thallium Speciation and Extractability in a Thallium- and Arsenic-Rich Soil Developed from Mineralized Carbonate Rock. Environmental Science & Technology 49(9), 5390–5398. http://doi:10.1021/acs.est.5b00629
Wang, X., Han, B., Shi, Y. and Pang, Z. (2009). Advanced wastewater treatment by integrated vertical flow constructed wetland with vetiveria zizanioides in north China. Procedia Earth and Planetary Science 1(1), 1258–1262. http://doi.org/10.1016/j.proeps.2009.09.194
Wei, Z., Van Le, Q., Peng, W., Yang, Y., Yang, H., Gu, H., … Sonne, C. (2020). A review on phytoremediation of contaminants in air, water, and soil. Journal of Hazardous Materials, 123658. http://doi.org/10.1016/j.jhazmat.2020.123658
Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K. and Weber, J. V. (2006). Landfill leachate treatment methods: A review. Environmental Chemistry Letters 4(1), 51–61. http://doi.org/10.1007/s10311-005-0016-z
Wong, M. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780. http://doi.org/10.1016/s0045-6535(02)00232-1

Copyright (c) 2023 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.