Phytoabsorption of heavy metals from leachates using the species Cyperus laxus and Chrysopogon zizanioides

  • S.G. Cahuich-Flores Universidad Juárez Autónoma de Tabasco
  • S. López-Martinez Universidad Juárez Autónoma de Tabasco
  • C.M. Morales-Bautista Universidad Juárez Autónoma de Tabasco
  • L. Pampillón-González Universidad Juárez Autónoma de Tabasco
  • E. Hernández-Núñez Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
Keywords: phytoremediation, native plant,, translocation factor, sanitary landfill, introduced plan


This study aimed to evaluate and compare the phytoremediation potential of Cyperus laxus and Chrysopogon zizanioides, exposed to a mixture of leachates containing heavy metals. C. laxus is a native species from Mexico and C. zizanioides is an introduced species. Exposure to the leachate was performed using concentration kinetics concerning exposure times (TE) (Control 1, Control 40, 1,7, 15, 30, and 40 days). For this purpose, a completely randomized two-factor design with a 2x7 arrangement in triplicate was performed. The data were analyzed by ANOVA followed by an LSD multiple range test. For the quantification of metals in leachate and plants, inductively coupled plasma atomic emission spectroscopy (ICP-OES) was used. Ten chemical elements (Al, As, Ba, Cr, Hg, Ni, Pb, Se, Tl, and Zn) were identified in leachate and plants. It was observed that C. laxus absorbed mostly Al, Ba, Cr, Cr, Hg, and Ni, while C. zizanioides absorbed As, Pb, Se, Tl, and Zn. In translocation factor (TF) calculations C. laxus translocated only As, whereas C. zizanioides translocated As>Tl>Ba>Cr>Ni, respectively.

Author Biographies

S.G. Cahuich-Flores, Universidad Juárez Autónoma de Tabasco

División Academica de Ciencias Biologicas. Laboratorio de Suelos 

C.M. Morales-Bautista, Universidad Juárez Autónoma de Tabasco

División Académica de Ciencias Biológicas 


L. Pampillón-González, Universidad Juárez Autónoma de Tabasco

División Académica de Ciencias Biológicas 

E. Hernández-Núñez, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional

Unidad Mérida, Departamento de Recursos del Mar.




Alloway, B. J. (2012). Sources of Heavy Metals and Metalloids in Soils. In: In: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability (Alloway, B, editor). Pp 11–50. 3rd edition. Dordrecht: Springer Netherlands. http://doi:10.1007/978-94-007-4470-7_2

Álvarez-Ayuso, E., Otones, V., Murciego, A., García-Sánchez, A. and Santa-Regina, I. (2013). Zinc, cadmium, and thallium distribution in soils and plants of an area impacted by sphalerite-bearing mine wastes. Geoderma 207–208, 25–34.

ATSDR (2007). Toxicological profile for barium and barium compounds. U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry. Available at: Accessed: August 16, 2021.

Aziz, S.Q., Aziz, H.A., Yusoff M.S., Bashir M.J.K. and Umar, M. (2010). Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. Journal of Environmental Management 91(12), 2608–2614.

Banerjee, R., Goswami, P., Pathak, K. and Mukherjee, A. (2016). Vetiver grass: An environment clean-up tool for heavy metal contaminated iron ore mine-soil. Ecological Engineering 90, 25–34.

Bertea, C.M. and Camusso, W. (2002). Anatomy, biochemistry, and physiology. In: Vetiveria: The Genus Vetiveria (M. Massimo editor), Pp. 19-25. 1st ed. London: CRC Press;

Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C. and Broll G. (2006). Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. International Journal of Phytoremediation 8(4), 273–284.

Brieger, G., Wells, J.R. and Hunter, R.D. (1992). Plant and animal species composition and heavy metal content in fly ash ecosystems. Water Air Soil Pollut 63(1–2), 87–103.

Calder, G.V. and Stark, T.D. (2010). Aluminum Reactions and Problems in Municipal Solid Waste Landfills. Pract Period Hazard Toxic Radioact Waste Manage. 2010;14(4):258–265.

Calder, G. V. and Stark, T. D. (2010). Aluminum Reactions and Problems in Municipal Solid Waste Landfills. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 14(4), 258–265.

Cameron, R.E. (1992). A guide for site and soil description in hazardous waste site characterization. Environmental Protection Agency (EPA). Available at: Accessed: September 12, 2021.

Chaudhry, F. M., Wallace, A. and Mueller, R. T. (1977). Barium toxicity in plants. Communications in Soil Science and Plant Analysis 8(9), 795–797.

Cherry, D. S. and Guthrie, R. K. (1979). The uptake of chemical elements from coal ash and settling basin effluent by primary producers II. Relation between concentrations in ash deposits and tissues of grasses growing on the ash. Science of The Total Environment, 13(1), 27–31.

Dalton, P. A., Smith, R. J. and Truong, P. N. V. (1996). Vetiver grass hedges for erosion control on a cropped flood plain: hedge hydraulics. Agricultural Water Management 31(1-2), 91–104.

Davamani, V., Indhu Parameshwari, C., Arulmani, S., Ezra John, J. and Poornima, R. (2021). Hydroponic phytoremediation of paperboard mill wastewater by using vetiver (Chrysopogon zizanioides). Journal of Environmental Chemical Engineering 9(4), 105528.

De la Cruz-López C.A., Ramos-Arcos, S.A. and López-Martínez, S. (2018). Efecto de la adición de ácidos orgánicos sobre la bioacumulación de Plomo, Talio y Vanadio en Chrysopogon zizanioides creciendo sobre suelos contaminados de un relleno sanitario. Nova Scientia 10(21), 403–422.

De Moya-Sánchez, Á., Casierra-Martínez, H., Vargas-Ramírez, X. and Caselles-Osorio, A. (2021). Chromium and Zinc removal from synthetic industrial wastewater in pilot-scale constructed wetlands planted with Cyperus odoratus L. INGE CUC 17(2),

Delgadillo-López, A.E., González-Ramírez, C.A., Prieto-García, F., Villagómez-Ibarra, J.R. and Acevedo-Sandoval, O. (2011). Fitorremediación: una alternativa para eliminar la contaminación. Tropical and subtropical agroecosystems 14(2), 597–612.

Dickinson, N. Phytoremediation. (2017). In: Encyclopedia of Applied Plant Sciences (B. Thomas, B.G. Murray, D.J. Murphy, editors). Pp. 327–331. 2nd Edition. Oxford: Academic Press.

Drabæk I, Iverfeldt Å. (1992). Mercury. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp 257–286. Elsevier.

El-Fadel, M., Findikakis, A. N. and Leckie, J. O. (1997). Environmental Impacts of Solid Waste Landfilling. Journal of Environmental Management 50(1), 1–25.

Escalante-Espinosa, E., Gallegos-Martínez, M. E., Favela-Torres, E. and Gutiérrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59(3), 405–413.

Frech, W. and Cedergren, A. (1992). Aluminium. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp. 451–473. Elsevier.

Gad, S.C. and Pham, T. (2014). Thallium. In: Encyclopedia of Toxicology (P. Wexler, editor). Pp. 527–529. Third Edition. Oxford: Academic Press.

Gajski, G., Oreščanin, V. and Garaj-Vrhovac, V. (2012). Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia. Ecotoxicology and Environmental Safety 78, 253–259.

Ghosh, M., Paul, J., Jana, A., De, A. and Mukherjee, A. (2015). Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecological Engineering 74, 258–265.

Giraldo, E. (2001). Tratamiento de lixiviados de rellenos sanitarios: avances recientes. Revista de Ingeniería 14(8), 44–55.

Gupta, N., Gaurav, S. S. and Kumar, A. (2013). Molecular basis of aluminum toxicity in plants: a review. American Journal of Plant Sciences 4, 21-37.

Huang, R.Q., Gao, S.F., Wang, W.L., Staunton, S. and Wang, G. (2006). Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Science of The Total Environment 368(2-3), 531–541.

Hussein, M., Yoneda, K., Mohd-Zaki, Z., Amir, A. and Othman, N. (2020). Heavy Metals in Leachate, Impacted Soils and Natural Soils of Different Landfills in Malaysia: An Alarming Threat. Chemosphere 267, 128874. http://doi:10.1016/j.chemosphere.2020.128874

Ihnat, M. (1992). Selenium. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp. 475–515. Elsevier. http://doi:10.1016/s0167-9244(08)70115-x

Irgolic, K. J. (1992). Arsenic. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp. 287–350. Elsevier. http://doi:10.1016/s0167-9244(08)70110-0

Jang, Y.C. and Townsend, T. G. (2003). Leaching of Lead from Computer Printed Wire Boards and Cathode Ray Tubes by Municipal Solid Waste Landfill Leachates. Environmental Science & Technology 37(20), 4778–4784.

Jones, F., Bankiewicz, D. and Hupa, M. (2014). Occurrence and sources of zinc in fuels. Fuel 117, 763–775. http://doi:10.1016/j.fuel.2013.10.005

Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A. and Christensen, T. H. (2002). Present and Long-Term Composition of MSW Landfill Leachate: A Review. Critical Reviews in Environmental Science and Technology 32(4), 297–336.

Lamb, D. T., Matanitobua, V. P., Palanisami, T., Megharaj, M. and Naidu, R. (2013). Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite. Environmental Science & Technology, 47(9), 4670–4676.

Li, G., Hu, N., Ding, D., Zheng, J., Liu, Y., Wang, Y. and Nie, X. (2011). Screening of Plant Species for Phytoremediation of Uranium, Thorium, Barium, Nickel, Strontium and Lead Contaminated Soils from a Uranium Mill Tailings Repository in South China. Bulletin of Environmental Contamination and Toxicology 86(6), 646–652.

Lis, J., Pasieczna, A., Karbowska, B., Zembrzuski, W. and Lukaszewski, Z. (2003). Thallium in Soils and Stream Sediments of a Zn−Pb Mining and Smelting Area. Environmental Science & Technology 37(20), 4569–4572.

López-Martínez, S., Gallegos-Martínez, M. E., Pérez-Flores, L. J. and Gutiérrez-Rojas, M. (2008). Contaminated Soil Phytoremediation byCyperus LaxusLam. Cytochrome P450 Erod-Activity Induced by Hydrocarbonsin Roots. International Journal of Phytoremediation 10(4), 289–301.

López-Martínez S. (2013). Cyperaceas: ¿plantas mágicas o malezas invasoras? Ciencia, Tecnología e Innovación para el desarrollo de México 2(11), 18–21.

Madejón P. (2012). Thallium. In: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability (B.J. Alloway, editor). Pp. 543–549. 3rd edition. Dordrecht: Springer Netherlands.

Maffei M. (2002). Introduction to the Genus Vetiveria. In: Vetiveria: The Genus Vetiveria (Maffei M, editor). Pp. 1-18. 1st Edition. CRC Press.

Marín-Garza, T., Gómez-Merino, F.C., Trejo-Téllez, L.I., Muñoz-Orozco, A., Tavitas-Fuentes, L., Hernández-Aragón, L., et al. (2010). Respuestas fisiológicas y nutrimentales de variedades de arroz a la concentración de aluminio. Revista fitotecnia Mexicana 33(1), 37–44.

Melato, F. A., Mokgalaka, N. S. and McCrindle, R. I. (2015). Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings. International Journal of Phytoremediation 18(5), 509–520.

Méndez-Novelo, R., Castillo-Borges, E., Sauri-Riancho, M.R.S., Quintal-Franco, C., Vallejos, G. and Jiménez-Mejía, B. (2004). Tratamiento fisicoquímico de los lixiviados de un relleno sanitario. Ingeniería 8(2), 155–163.

Méndez-Novelo, R.I., Cachon-Sandoval, E. and Sauri-Riancho, M.R. (2002). Influencia del material de cubierta en la composición de los lixiviados de un relleno sanitario. Ingeniería 6(2), 7–12.

Miller-Ihli, N. J. (1992). Chromium. In: Hazardous Metals in the Environment (M. Stoeppler, editor). Pp. 373–404. Elsevier. http://doi:10.1016/s0167-9244(08)70112-4

Nogueirol, R. C., Monteiro, F. A. and Azevedo, R. A. (2015). Tropical soils cultivated with tomato: fractionation and speciation of Al. Environmental Monitoring and Assessment 187(4).

Peralta-Pérez, M. del R. and Volke-Sepúlveda, T. (2020). The antioxidant defense in plants. Revista Mexicana de Ingeniería Química 11(1), 75-88.

Pérez, A., Martínez, D., Barraza, Z. and Marrugo, J. (2016). Bacterias endófitas asociadas a los géneros Cyperus y Paspalum en suelos contaminados con mercurio. Revista UDCA Actualidad & Divulgación Científica 19(1), 67–76.

Petenello, M.C. and Feldman, S.R. (2012). Evaluación de la tolerancia a suelos contaminados con aceite diesel en especies vegetales con potencial biorremediador. Acta Biológica Colombiana 17(3), 589–598.

Poschenrieder, C., Gunsé, B., Corrales, I. and Barceló, J. (2008). A glance into aluminum toxicity and resistance in plants. Science of The Total Environment 400(1-3), 356–368.

Prieto-Méndez, J., González-Ramírez, C.A., Roman-Gutiérrez, A. and Prieto-García, F. (2009). Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems 10(1), 29–44.

Raab, A., Williams, P. N., Meharg, A. and Feldmann, J. (2007). Uptake and translocation of inorganic and methylated arsenic species by plants. Environmental Chemistry 4(3), 197.

Ramírez-Cadavid J. D. (2018). Evaluación del vetiver (chrysopogon zizanioides) y la elefanta (pennisetum purpureum) en la caracterización de humedales artificiales para el tratamiento de aguas residuales domésticas. Revista Científica en Ciencias Ambientales y Sostenibilidad 4(1).

Ramos-Arcos, S. A., López-Martínez, S., Lagunas-Rivera, S., González-Mondragón, E.G., De La Cruz-Leyva, M.C. and Velázquez-Martínez, J.R. (2019). Phytoremediation of landfill leachate using vetiver (chrysopogon zizanioides) and cattail (Typha latifolia). Applied Ecology and Environmental Research 17(2), 2619–2630.

Reeves R, Baker A. Metal accumulating plants. (2000). In: Phytoremediation of toxic metal: Usings Plants to clean up the environment (I. Raskin and B.D. Ensley, editors). Pp. 193–229. New York: Jhon Wiley & Sons, Inc.

Roongtanakiat, N. and Chairoj P. (2001). Uptake Potential of Some Heavy Metals by Vetiver Grass. Agriculture and Natural Resources 35(1), 46–50.

Roongtanakiat, N., Tangruangkiat, S. and Meesat, R. (2007). Utilization of vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. Science Asia 33(4), 397.

Rubio, C., González-Weller, D., Martín-Izquierdo, R.E., Revert, C., Rodríguez, I. and Hardisson, A. (2007). El zinc: oligoelemento esencial. Nutrición Hospitalaria 22(1), 101–107.

San-Pedro, L., Méndez-Novelo, R., Hernández-Núñez, E., Nájera-Aguilar, H. and Gutiérrez-Hernández, R. (2021). Fenton-adsorption process for leachates from two landfills (karstic-clays). Revista Mexicana De Ingeniería Química 20(2), 853-866.

Schachtschneider, K., Chamier, J. and Somerset, V. (2017). Phytostabilization of metals by indigenous riparian vegetation. Water SA 43(2), 177–185.

SECOFI. (1980). Norma Mexicana, NMX-AA-003-1980. Aguas residuales: muestreo [Internet]. Secretaria de Comercio Y Fomento Industrial; 1980. Available at: Accessed: October 21, 2021.

SECOFI. (2006). Norma Mexicana, NMX-AA-132-SCFI-2006. Muestreo de Suelos para la Identificación Y la Cuantificación de Metales Y Metaloides, Y Manejo de la Muestra [Internet]. 2006. Available at: Accessed: October 12, 2021.

Toneatti, M. and Rivera, N.R. (2006). Ensayos de Tolerancia al Aluminio de Bromus stamineus y Bromus lithobius Recolectados en el Sur de Chile. Información tecnológica 17(1), 9–17.

Torres-Rodríguez, D., Cumana, A., Torrealba, O. and Posada, D. (2010). Uso del vetiver para la fitorremediación de cromo en lodos residuales de una tenería. Revista Mexicana De Ciencias Agrícolas 1(2), 175–188.

Truong PNV, Foong YK, Guthrie M, Hung YT. (2010). Phytoremediation of Heavy Metal Contaminated Soils and Water Using Vetiver Grass. In: Environmental Bioengineering (L.K. Wang, J.H. Tay, S.T.L. Tay and Y.T. Hung, editors). Pp. 233–275. Totowa, NJ: Humana Press.

Valderrama-Ocoró, M.F., Chavarro-Guzmán, L.E., Osorio-Gómez, J.C. and Peña-Montoya, C.C. (2018). Estudio dinámico del reciclaje de envases pet en el Valle del Cauca. Revista Lasallista de Investigación 15(1), 67–74.

Vallero, D.A. and Blight, G. (2019). The Municipal Landfill. In: Waste: A Handbook for Management (T.M. Letcher, D.A. Vallero, editors). Pp. 235–258. Second Edition. Elsevier.

Veldkamp, J.F. (1999). A revision of Chrysopogon Trin. including Vetiveria Bory (Poaceae) in Thailand and Malesia with notes on some other species from Africa and Australia. Austrobaileya 5(3), 503–533.

Viraraghavan, T. and Srinivasan, A. (2011). Thallium: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health 325–333.

Voegelin, A., Pfenninger, N., Petrikis, J., Majzlan, J., Plötze, M., Senn, A.-C., … Göttlicher, J. (2015). Thallium Speciation and Extractability in a Thallium- and Arsenic-Rich Soil Developed from Mineralized Carbonate Rock. Environmental Science & Technology 49(9), 5390–5398. http://doi:10.1021/acs.est.5b00629

Wang, X., Han, B., Shi, Y. and Pang, Z. (2009). Advanced wastewater treatment by integrated vertical flow constructed wetland with vetiveria zizanioides in north China. Procedia Earth and Planetary Science 1(1), 1258–1262.

Wei, Z., Van Le, Q., Peng, W., Yang, Y., Yang, H., Gu, H., … Sonne, C. (2020). A review on phytoremediation of contaminants in air, water, and soil. Journal of Hazardous Materials, 123658.

Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K. and Weber, J. V. (2006). Landfill leachate treatment methods: A review. Environmental Chemistry Letters 4(1), 51–61.

Wong, M. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780.

How to Cite
Cahuich-Flores, S., López-Martinez, S., Morales-Bautista, C., Pampillón-González, L., & Hernández-Núñez, E. (2023). Phytoabsorption of heavy metals from leachates using the species Cyperus laxus and Chrysopogon zizanioides. Revista Mexicana De Ingeniería Química, 22(1), IA3034.
Environmental Engineering

Most read articles by the same author(s)