Variability of the components of oil drilling waste according to the treatment temperature
Abstract
In Mexico's hydrocarbon sector, drilling waste represents a problem because the techniques to treat it increase production costs and although thermal desorption represents a good option, it presents variations in removals. For these reasons, these variations were evaluated according to the treatment temperature (< 320 ° C) on a laboratory scale. It was observed that the samples have minerals in common (quartz, barite, and calcium sulfate) and these do not vary after treatments, but other minerals were observed that are present in some samples and not in others. It was also observed that the hydrocarbons decrease with respect to the temperature, but when comparing the removed percentages and the fractions, they are different between the samples; likewise, Cd, Cr, Pb, Ni, Zn, V, Ba, Fe, and Mn were detected, but their concentration in the leachates is low. It is concluded that the variation in the constituents of the drilling cuttings could depend on the source of generation and that this factor could influence the final properties of the treated solid since although the removal of hydrocarbons is achieved, the fractions present, and the concentration of metals are different between the samples
References
Abdou, M. I., Al-Sabagh, A. M., Ahmed, H. E. S., and Fadl, A. M. (2018). Impact of barite and ilmenite mixture on enhancing the drilling mud weight. Egyptian Journal of Petroleum 27(4), 955-967. https://doi.org/10.1016/j.ejpe.2018.02.004
Adams, R. H., Cerecedo-López, R. A., Alejandro-Álvarez, L. A., Domínguez-Rodríguez, V. I., and Nieber, J. L. (2016). Treatment of water-repellent petroleum-contaminated soil from Bemidji, Minnesota, by alkaline desorption. International Journal of Environmental Science and Technology 13(9), 2249-2260. https://doi.org/10.1007/s13762-016-1058-4
Alpizar–Castro, I., and Rodríguez–Monroy, C. (2016). Review of Mexico׳ s energy reform in 2013: Background, analysis of the reform and reactions. Renewable and Sustainable Energy Reviews 58, 725-736. https://doi.org/10.1016/j.rser.2015.12.291
Álvarez-Coronel, G., Domínguez-Rodríguez, V. I., Adams, R. H., López, D. J., and Zavala-Cruz, J. (2020). The Role of Soil Clays in Mitigating or Exacerbating Impacts to Fertility in Crude Oil-contaminated Sites. Pertanika Journal of Tropical Agricultural Science 43(2), 119-139. https://core.ac.uk/download/pdf/324186463.pdf#page=41
Androvitsaneas, V. P., Gonos, I. F., and Stathopulos, I. A. (2017). Research and applications of ground enhancing compounds in grounding systems. IET Generation, Transmission & Distribution 11(13), 3195-3201. https://doi.org/10.1049/iet-gtd.2017.0233
Ahumada, C. D., Hinojosa-Palafox, J. F., Maytorena, V. M., and Pérez-Rábago, C. (2022). Computational study of biomass fast pyrolysis in a fluidized bed reactor. Revista Mexicana de Ingeniería Química 21(2), 1-15. https://doi.org/10.24275/rmiq/Cat2744
Bakshi, M., Ghosh, S., Chakraborty, D., Hazra, S., and Chaudhuri, P. (2018). Assessment of potentially toxic metal (PTM) pollution in mangrove habitats using biochemical markers: A case study on Avicennia officinalis L. in and around Sundarban, India. Marine Pollution Bulletin 133, 157-172. https://doi.org/10.1016/j.marpolbul.2018.05.030
Borda, J., Torres, R., and Lapidus, G. (2022). Selective leaching of zinc and lead from electric arc furnace dust using citrate and H2SO4 solutions. A kinetic perspective. Revista Mexicana de Ingeniería Química 21(1), 2606. https://doi.org/10.24275/rmiq/cat2606
Brooks, G. R., Larson, R. A., Schwing, P. T., Diercks, A. R., Armenteros, M., Diaz-Asencio, M., and Hollander, D. J. (2020). Gulf of Mexico (GoM) bottom sediments and depositional processes: A baseline for future oil spills. In: Scenarios and Responses to Future Deep Oil Spills, (S.A. Murawski, C.H. Ainsworth, S. Gilbert, D.J. Hollander, C.B. Paris, M. Schlüter, D.L. Wetzel, eds.) Pp. 75-95. Springer, Cham. https://doi.org/10.1007/978-3-030-12963-7_30
Canul-Chan, M., Rodas-Junco, B. A., Uribe-Riestra, E., and Houbron, E. (2023). Biodegradation of crude oil present in wastewaters: evaluation of biosurfactant production and catechol 2, 3 dioxygenase activity. Revista Mexicana de Ingeniería Química 22(1), 1-9. https://doi.org/10.24275/rmiq/Bio2932
Chen, X., Yang, Y., Lu, Z., Chen, K., Li, Y., Huang, X., and Wang, X. (2022). Oil-based drilling cuttings pyrolysis residues at a typical shale gas drilling field in Chongqing: pollution characteristics and environmental risk assessment. Environmental Geochemistry and Health 44(12), 1-14. https://doi.org/10.1007/s10653-022-01388-5
Czop, M., and Łaźniewska-Piekarczyk, B. (2020). Use of slag from the combustion of solid municipal waste as a partial replacement of cement in mortar and concrete. Materials 13(7), 1593. https://doi.org/10.3390/ma13071593
Da Rosa Couto, R., Faversani, J., Ceretta, C. A., Ferreira, P. A. A., Marchezan, C., Facco, D. B., and Brunetto, G. (2018). Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization. Ecotoxicology and environmental safety 153, 142-150. https://doi.org/10.1016/j.ecoenv.2018.01.046
De Titto, E., and Savino, A. (2019). Environmental and health risks related to waste incineration. Waste Management & Research 37(10), 976-986. https://doi.org/10.1177/0734242X19859700
Díaz-Ramírez, I. J., Escalante-Espinosa, E., Favela-Torres, E., Gutiérrez-Rojas, M., and Ramírez-Saad, H. (2008). Design of bacterial defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE. International Biodeterioration & Biodegradation 62(1), 21-30. https://doi.org/10.1016/j.ibiod.2007.11.001
Falciglia, P. P., Lumia, L., Giustra, M. G., Gagliano, E., Roccaro, P., Vagliasindi, F. G., and Di Bella, G. (2020). Remediation of petrol hydrocarbon-contaminated marine sediments by thermal desorption. Chemosphere 260, 127576. https://doi.org/10.1016/j.chemosphere.2020.127576
Fayiga, A. O., Ipinmoroti, M. O., and Chirenje, T. (2018). Environmental pollution in Africa. Environment, Development and Sustainability 20(1), 41-73. https://doi.org/10.1007/s10668-016-9894-4
García-Arreola, M. E., Soriano-Pérez, S. H., Flores-Vélez, L. M., Cano-Rodríguez, I., and Alonso-Dávila, P. A. (2015). Comparación de ensayos de lixiviación estáticos de elementos tóxicos en residuos mineros. Revista Mexicana de Ingeniería Química 14(1), 109-117. http://rmiq.org/ojs311/index.php/rmiq/article/view/1227
Gómez-Mellado, A. Y., Morales-Bautista, C. M., Garza-Rodríguez, I. M., Torres-Sánchez, S. A., and Sánchez-Lombardo, I. (2020). Evaluación de dos técnicas de remediación aplicadas a un sitio impactado por aguas de producción petrolera. Terra Latinoamericana 38(1), 77-89. https://doi.org/10.28940/terra.v38i1.564
Hernández-Mendoza, H., Ríos-Lugo, M. J., Romero-Guzmán, E. T., Reyes-Gutiérrez, L. R., and Ketterer, M. E. (2018). Heavy metals monitoring in sediments from Lerma River in West-Central Mexico. American Journal of Analytical Chemistry 9(2), 77-87. https://doi.org/10.4236/ajac.2018.92007
Hosseini-Dastgerdi, Z., and Meshkat, S. S. (2019). An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution. Journal of Petroleum Science and Engineering 174, 1053-1061. https://doi.org/10.1016/j.petrol.2018.12.024
Iryna, A., and Leonid, P. (2016). The immobilization of heavy metals during drilling sludge utilization. Environmental technology & innovation 6, 123-131. https://doi.org/10.1016/j.eti.2016.08.004
Johnston, J. E., Lim, E., and Roh, H. (2019). Impact of upstream oil extraction and environmental public health: A review of the evidence. Science of the Total Environment 657, 187-199. https://doi.org/10.1016/j.scitotenv.2018.11.483
Kennish, M. J., and Paerl, H. W. (2010). Coastal lagoons: critical habitats of environmental change. CRC Press Web Taylor & Francis Group Ed., N.W. EE. UU.
Khanpour, R., Sheikhi-Kouhsar, M. R., Esmaeilzadeh, F., and Mowla, D. (2014). Removal of contaminants from polluted drilling mud using supercritical carbon dioxide extraction. The Journal of Supercritical Fluids 88, 1-7. https://doi.org/10.1016/j.supflu.2014.01.004
Kovacs, H., and Szemmelveisz, K. (2017). Disposal options for polluted plants grown on heavy metal contaminated brownfield lands–a review. Chemosphere 166, 8-20. https://doi.org/10.1016/j.chemosphere.2016.09.076
Khudur, L. S., Gleeson, D. B., Ryan, M. H., Shahsavari, E., Haleyur, N., Nugegoda, D., and Ball, A. S. (2018). Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils. Environmental Pollution 243, 94-102. https://doi.org/10.1016/j.envpol.2018.08.040
Liu, H., Li, J., Zhao, M., Li, Y., and Chen, Y. (2019). Remediation of oil-based drill cuttings using low-temperature thermal desorption: performance and kinetics modeling. Chemosphere 235, 1081-1088. https://doi.org/10.1016/j.chemosphere.2019.07.047
Mahmoud, M. A., and Elkatatny, S. (2019). Removal of barite-scale and barite-weighted water-Or oil-based-drilling-fluid residue in a single stage. SPE Drilling & Completion, 34(01), 16-26. https://doi.org/10.2118/187122-PA
Manjaiah, K. M., Mukhopadhyay, R., Paul, R., Datta, S. C., Kumararaja, P., and Sarkar, B. (2019). Clay minerals and zeolites for environmentally sustainable agriculture. In: Modified clay and zeolite nanocomposite materials (M. Mercurio, B. Sarkar and A. Langella, eds.), Pp. 309-329. Elsevier. https://doi.org/10.1016/B978-0-12-814617-0.00008-6
Mao, J., Nierop, K. G., Dekker, S. C., Dekker, L. W., and Chen, B. (2019). Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. Journal of Soils and Sediments, 19(1), 171-185. https://doi.org/10.1007/s11368-018-2195-9
Méndez-Moreno, J. D. C., Garza-Rodríguez, I. M., Torres-Sánchez, S. A., Jiménez-Pérez, N. D. C., Sánchez-Lombardo, I., López-Martínez, S. and Morales-Bautista, C. M. (2021). Changes in restored soils subject to weathering and their implication in Mexican environmental regulations. Terra Latinoamericana 39, 1-21. https://doi.org/10.28940/terra.v39i0.798
Moghal, A. A. B., Lateef, M. A., Mohammed, S. A. S., Lemboye, K., CS Chittoori, B., and Almajed, A. (2020). Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions. Sustainability 12(17), 7019. https://doi.org/10.3390/su12177019
Moreno-Brid, J. C., and Gallagher, K. (2020). Mexico’s Road to a Green New Deal: To tackle intersecting climate and economic crises, Mexico must first break away from decades of neoliberalism and fiscal austerity. NACLA Report on the Americas 52(2), 152-157. https://doi.org/10.1080/10714839.2020.1768733
Naveenkumar, T., Backiyavathy, M. R., Chitdeshwari, T., Maheshwari, M., Saraswathi, T., and Lakshmanan, A. (2022). Influence of zeolite on heavy metal immobilization in municipal solid waste compost contaminated soil. Journal of Applied and Natural Science 14(3), 971-977. https://doi.org/10.31018/jans.v14i3.3741
Omar, K., and Vilcaez, J. (2022). Removal of toxic metals from petroleum produced water by dolomite filtration. Journal of Water Process Engineering 47, 102682. https://doi.org/10.1016/j.jwpe.2022.102682
Ossai, I. C., Ahmed, A., Hassan, A., and Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation 17, 100526. https://doi.org/10.1016/j.eti.2019.100526
Robles-Martínez, F., Morales-López, Y., Piña-Guzmán, A. B., Espíndola-Serafín, O., Tovar-Gálvez, L. R., & Valencia-del Toro, G. (2011). Medición de pH y cuantificación de metales pesados en los lixiviados del relleno sanitario más grande de la zona metropolitana de la ciudad de México. Universidad y Ciencia 27(2), 121-132. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0186-29792011000200002
SEMARNAT (2002). Norma Oficial Mexicana NOM-021-SEMARNAT-2000. Available in: https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf. Consulted: January 31, 2023.
SEMARNAT (2003). Norma Oficial Mexicana NOM-053-SEMARNAT-1993. Available in: https://www.imss.gob.mx/sites/all/statics/profesionalesSalud/investigacionSalud/cbis/nom-053-semarnat-1993.pdf. Consulted: January 30, 2023.
SEMARNAT (2007). Norma Oficial Mexicana NOM-147-SEMARNAT-SSA1-2004. Available in: https://www.profepa.gob.mx/innovaportal/file/1392/1/nom-147-semarnat_ssa1-2004.pdf. Consulted: February 1, 2023.
SEMARNAT (2013). Norma Oficial Mexicana NOM-138-SEMARNAT/SSA1-2012. Available in. https://www.dof.gob.mx/nota_detalle.php?codigo=5313544&fecha=10/09/2013#gsc.tab=0 Consulted: February 15, 2023.
Snedden, J. W., and Galloway, W. E. (2019). The Gulf of Mexico sedimentary basin: Depositional evolution and petroleum applications. Cambridge University Press.
Sörengård, M., Lindh, A. S., and Ahrens, L. (2020). Thermal desorption as a high removal remediation technique for soils contaminated with per-and polyfluoroalkyl substances (PFASs). PloS one 15(6), e0234476. https://doi.org/10.1371/journal.pone.0234476
Steliga, T., & Kluk, D. (2021). Assessment of the suitability of Melilotus officinalis for phytoremediation of soil contaminated with petroleum hydrocarbons (TPH and PAH), Zn, Pb and Cd based on toxicological tests. Toxics 9(7), 148. https://doi.org/10.3390/toxics9070148
Temraz, M. G., and Hassanien, I. (2016). Mineralogy and rheological properties of some Egyptian bentonite for drilling fluids. Journal of Natural Gas Science and Engineering 31, 791-799. https://doi.org/10.1016/j.jngse.2016.03.072
Vidonish, J. E., Zygourakis, K., Masiello, C. A., Sabadell, G., and Alvarez, P. J. (2016). Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering 2(4), 426-437. https://doi.org/10.1016/J.ENG.2016.04.005
Wang, C. Q., Lin, X. Y., Zhang, C., and Mei, X. D. (2017). Environmental security control of resource utilization of shale gas’ drilling cuttings containing heavy metals. Environmental Science and Pollution Research 24(27), 21973-21983. https://doi.org/10.1007/s11356-017-9703-0
Wang, Y., and Mi, J. (2019). Applying statistical methods to library data analysis. The Serials Librarian 76(1-4), 195-200. https://doi.org/10.1080/0361526X.2019.1590774
Whitaker, A., Penn, C., and Warren, J. (2016). Surface application of a saline-sodic oil & gas drilling waste to winter wheat (Triticum aestivum L.). Geoderma 274, 97-103. https://doi.org/10.1016/j.geoderma.2016.03.024
Wu, N., Nie, Z. Q., Li, K. H., Sun, Y. J., Cai, H. Y., Zhang, M. L., ... & Huang, Q. F. (2019). Pollution characteristics of solid waste in shale gas mining drilling. China Environmental Science 39(3), 1094-1100.
Yi, Y. M., Park, S., Munster, C., Kim, G., and Sung, K. (2016). Changes in ecological properties of petroleum oil-contaminated soil after low-temperature thermal desorption treatment. Water, Air, & Soil Pollution 227(4), 1-10. https://doi.org/10.1007/s11270-016-2804-4
Yzquierdo-Ruíz, M. M., Torres-Sánchez, S. A., De la Garza-Rodríguez, I. M., Ojeda-Morales, M. E., Hernández-Nuñez, E., Lobato-García, C. E., ... & Morales-Bautista, C. M. (2022). Pre-evaluation of contaminated soil for oil field reactivation in Moloacan, Veracruz, Mexico. Revista Mexicana de Ingeniería Química 21(2), IA2753-IA2753. https://doi.org/10.24275/rmiq/IA2753
Zhang, S., Feng, Y., Li, B., Deng, J., Geng, T., and Zhang, J. (2022). Fracture development during disposal of hazardous drilling cuttings by deep underground injection: A review. Journal of Rock Mechanics and Geotechnical Engineering 14(5), 1652-1670. https://doi.org/10.1016/j.jrmge.2022.05.001.
Zhang, N., Zhang, Z., Rui, Z., Li, J., Zhang, C., Zhang, Q and Patil, S. (2018). Comprehensive risk assessment of high sulfur-containing gas well. Journal of Petroleum Science and Engineering 170, 888-897. https://doi.org/10.1016/j.petrol.2018.07.016
Zhang, Z., Zhang, B., and Yan, P. (2016). Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures. Construction and Building Materials 121, 483-490. https://doi.org/10.1016/j.conbuildmat.2016.06.014
Zhao, C., Dong, Y., Feng, Y., Li, Y., & Dong, Y. (2019). Thermal desorption for remediation of contaminated soil: A review. Chemosphere 221, 841-855. https://doi.org/10.1016/j.chemosphere.2019.01.079

Copyright (c) 2023 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.