Assessment of moisture adsorption and desorption isotherms, hysteresis phenomenon and thermodynamic analysis of habanero chili (Capsicum chinense) powder

  • M. Luna-Flores
  • M.G. Peña-Juarez
  • A.M. Bello-Ramírez
  • J. Telis-Romero
  • G. Luna-Solano TecNM-Instituto Tecnologico de Orizaba http://orcid.org/0000-0002-2470-6273
Keywords: Habanero chili powder, Moisture sorption isotherms, Dynamic vapor sorption, Mathematical modeling, Thermodynamic analysis.

Abstract

Moisture adsorption and desorption isotherms (MSIs) of habanero chili powder were determined at different temperatures (20-55 °C) and water activities (aw; 0.10-0.90) using the Dynamic Vapor Sorption (DVS) method and applying the conditions typically used during the storage, packaging, and drying of habanero chili. The MSIs were sigmoidal (Type II); the best fit models were GAB and Peleg. The sorption capacity of habanero chili powder decreased with increasing temperature and constant aw, becoming less hygroscopic. The hysteresis phenomenon was observed for all the temperatures evaluated. Thermodynamic properties were strongly dependent on the equilibrium moisture content (EMC). The net and total isosteric heat were higher for desorption than for adsorption, in both, they decreased as EMC increased. Sorption entropy and Gibbs free energy also decreased with rising EMC. Furthermore, the sorption surface area (SSA) decreased with increasing temperature. This information is essential to know the optimal storage and processing conditions to preserve the quality and prolong the shelf life of habanero chili powder.

References

Al-Muhtaseb, A. H., McMinn, W. A. M. and Magee, T. R. A. (2004). Water sorption isotherms of starch powders. Part 1: mathematical description of experimental data. Journal of Food Engineering, 61, 297–307. https://doi.org/10.1016/S0260-8774(03)00133-X

Araújo, A. L. de, and Pena, R. da S. (2022). Moisture desorption behavior and thermodynamic properties of pulp and seed of jambolan (Syzygium cumini). Heliyon, 8(5), e09443. https://doi.org/10.1016/j.heliyon.2022.e09443

Arslan-Tontul, S. (2020). Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. LWT - Food Science and Technology, 119, 108859. https://doi.org/10.1016/j.lwt.2019.108859

De Sá Mendes, N., Santos, M. C. P., Santos, M. C. B., Cameron, L. C., Ferreira, M. S. L. and Gonçalves, É. C. B. A. (2019). Characterization of pepper (Capsicum baccatum) - A potential functional ingredient. LWT - Food Science and Technology, 112, 108209. https://doi.org/10.1016/j.lwt.2019.05.107

De Souza, S. J. F., Alves, A. I., Vieira, É. N. R., Vieira, J. A. G., Ramos, A. M. and Telis-Romero, J. (2015). Study of thermodynamic water properties and moisture sorption hysteresis of mango skin. Food Science and Technology, 35(1), 157–166. https://doi.org/10.1590/1678-457X.6557

Getahun, E., Gabbiye, N., Delele, M. A., Fanta, S. W., Gebrehiwot, M. G., and Vanierschot, M. (2020). Effect of maturity on the moisture sorption isotherm of chili pepper (Mareko Fana variety). Heliyon, 6(8), e04608). https://doi.org/10.1016/j.heliyon.2020.e04608

Goneli, A. L. D., Corrêa, P. C., Oliveira, G. H. H. and Afonso Júnior, P. C. (2013). Water sorption properties of coffee fruits, pulped and green coffee. LWT - Food Science and Technology, 50(2), 386–391.https://doi.org/10.1016/j.lwt.2012.09.006

Guadarrama-Lezama, A.Y., Carrillo-Navas, H., Cruz-Olivares, J., Martínez-Vargas, S.L., Román-Guerrero and A., Pérez-Alonso, C. (2014). Determination of the minimum integral entropy, water sorption and glass transition temperature to establishing critical storage conditions of beetroot juice microcapsules by spray drying. Revista Mexicana de Ingeniería Química 13, 405-416.

Guillén-Velázquez, P., Cantú-Lozano, D., Rascón-Díaz, M., Jimenez-Fernández, M., & Luna Solano, G. (2022). Swelling, erosion and physicochemical characteristics of plum powder tablets obtained by spray drying. Revista Mexicana De Ingeniería Química, 21(3), Alim2867. https://doi.org/10.24275/rmiq/Alim2867

Hernández-Carrillo, J. G., Mújica-Paz, H., Welti-Chanes, J., Spatafora-Salazar, A. S., and Valdez-Fragoso, A. (2019). Sorption behavior of citric pectin films with glycerol and olive oil. Revista Mexicana de Ingeniera Quimica, 18(2), 487–500. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Hernandez

Hidar, N., Ouhammou, M., Idlimam, A., Jaouad, A., Bouchdoug, M., Lamharrar, A. and Mahrouz, M. (2018). Investigation of water adsorption and thermodynamic properties of stevia powder. Journal of Food Measurement and Characterization, 12(4), 2615–2625. https://doi.org/10.1007/s11694-018-9879-0

Kaleemullah, S. and Kailapan, R. (2004). Moisture Sorption Isotherms of Red Chillies. Biosystems Engineering, 88 (1); 95-104. https://doi.org/10.1016/j.biosystemseng.2004.01.003

Kaymak-Ertekin, F. and Gedik, A. (2004). Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT - Food Science and Technology, 37(4), 429–438. https://doi.org/10.1016/j.lwt.2003.10.012

Kurozawa, L. E., de Oliveira, R. A., Hubinger, M. D. and Park, K. J. (2015). Thermodynamic properties of water desorption of papaya. Journal of Food Processing and Preservation, 39(6), 2412–2420. https://doi.org/10.1111/jfpp.12491

Medina-Torres, N., Cuevas-Bernardino, J. C., Ayora-Talavera, T., Patrón-Vázquez, J. A., Rodríguez-Buenfil, I., and Pacheco, N. (2021). Changes in the physicochemical, rheological, biological, and sensorial properties of habanero Chili pastes affected by ripening stage, natural preservative and thermal processing. Revista Mexicana de Ingeniera Química, 20(1), 195–212. https://doi.org/10.24275/rmiq/Alim1768

Moussaoui, H., Bahammou, Y., Idlimam, A., Lamharrar, A. and Abdenouri, N. (2019). Investigation of hygroscopic equilibrium and modeling sorption isotherms of the argan products: A comparative study of leaves, pulps, and fruits. Food and Bioproducts Processing, 114, 12–22. https://doi.org/10.1016/j.fbp.2018.11.002

Muzaffar, K. and Kumar, P. (2016) Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, 291, 322-327. https://doi.org/10.1016/j.powtec.2015.12.046

Pascual-Pineda, L., Guerrero-Hernández, A., Castillo-Morales, M., Salazar, R., Jiménez-Fernández, M., and Flores-Andrade, E. (2022). Determination of the spreading pressure and shelf-life of spray-dried coffee powder: quality assurance of a water-soluble food. Revista Mexicana De Ingeniería Química, 21(3), Alim2921. https://doi.org/10.24275/rmiq/Alim2921

Pavón-García, L.M.A., Gallardo-Rivera, R., Román-Guerrero, A., Carrillo-Navas, H., Rodríguez-Huezo, M.E., Guadarrama-Lezama, A.Y., and Pérez-Alonso, C. (2015). Moisture sorption properties and storage stability conditions of a nutraceutical system microencapsulated by spray drying. Revista mexicana de ingeniería química, 14(3), 601-613. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1275

Rizvi, S. S. H. (2005). Thermodynamic properties of foods in dehydration: In Rao M.A., Rizvi S.S.H and Datta A.K, Engineering Properties of Foods. Pp. 78-84. Third edition. Taylor & Francis CRC. New York.

Sawhney, I. K., Sarkar, B. C., Patil, G. R. and Sharma, H. (2013). Moisture sorption isotherms and thermodynamic properties of whey protein concentrate powder from Buffalo skim milk. Journal of Food Processing and Preservation, 38(4), 1787-1798. https://doi.org/10.1111/jfpp.12148

Simal, S., Femenia, A., Castell-Palou, Á. and Rosselló, C. (2007). Water desorption thermodynamic properties of pineapple. Journal of Food Engineering, 80(4), 1293–1301. https://doi.org/10.1016/j.jfoodeng.2006.10.001

Sinija, V. R. and Mishra, H. N. (2008). Moisture sorption isotherms and heat of sorption of instant (soluble) green tea powder and green tea granules. Journal of Food Engineering, 86(4), 494–500. https://doi.org/10.1016/j.jfoodeng.2007.10.026

Soleimanifard, S. and Hamdami, N. (2018). Modelling of the sorption isotherms and determination of the isosteric heat of split pistachios, pistachio kernels and shells. Czech J. Food Sci., 36: 268-275. https://doi.org/10.17221/460/2016-CJFS

Viganó, J., Azuara, E., Telis, V. R. N., Beristain, C. I., Jiménez, M. and Telis- Romero, J., (2012). Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods. Thermochimica Acta, 528, 63–71. https://doi.org/10.1016/j.tca.2011.11.011

Villegas-Santiago, J., Gómez-Navarro, F., Dominguez-Niño, A., García-Alvarado, M., Salgado-Cervantes, M. and Luna-Solano, G. (2019). Effect of spray-drying conditions on moisture content and particle size of coffee extract in a prototype dryer. Revista Mexicana De Ingeniería Química, 19(2), 767-781. https://doi.org/10.24275/rmiq/Proc767

Yan, Z., Sousa-Gallagher, M. J. and Oliveira, F. A. R. (2008). Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. Journal of Food Engineering, 86(3), 342-348. https://doi.org/10.1016/j.jfoodeng.2007.10.009

Yogendrarajah, P., Samapundo, S., Devlieghere, F., De Saeger, S. and De Meulenaer, B. (2015). Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT - Food Science and Technology, 64(1), 177–188. https://doi.org/10.1016/j.lwt.2015.05.045

Woldemariam, H. W., Admassu Emire, S., Getachew Teshome, P., Toepfl, S., and Aganovic, K. (2021). Physicochemical, functional, oxidative stability and rheological properties of red pepper (Capsicum annuum L.) powder and paste. International Journal of Food Properties, 24(1), 1416–1437. https://doi.org/10.1080/10942912.2021.1969945

Published
2023-03-18
How to Cite
Luna-Flores, M., Peña-Juarez, M., Bello-Ramírez, A., Telis-Romero, J., & Luna-Solano, G. (2023). Assessment of moisture adsorption and desorption isotherms, hysteresis phenomenon and thermodynamic analysis of habanero chili (Capsicum chinense) powder. Revista Mexicana De Ingeniería Química, 22(1), Alim3044. https://doi.org/10.24275/rmiq/Alim3044
Section
Food Engineering

Most read articles by the same author(s)