Assessment of moisture adsorption and desorption isotherms, hysteresis phenomenon and thermodynamic analysis of habanero chili (Capsicum chinense) powder
Abstract
Moisture adsorption and desorption isotherms (MSIs) of habanero chili powder were determined at different temperatures (20-55 °C) and water activities (aw; 0.10-0.90) using the Dynamic Vapor Sorption (DVS) method and applying the conditions typically used during the storage, packaging, and drying of habanero chili. The MSIs were sigmoidal (Type II); the best fit models were GAB and Peleg. The sorption capacity of habanero chili powder decreased with increasing temperature and constant aw, becoming less hygroscopic. The hysteresis phenomenon was observed for all the temperatures evaluated. Thermodynamic properties were strongly dependent on the equilibrium moisture content (EMC). The net and total isosteric heat were higher for desorption than for adsorption, in both, they decreased as EMC increased. Sorption entropy and Gibbs free energy also decreased with rising EMC. Furthermore, the sorption surface area (SSA) decreased with increasing temperature. This information is essential to know the optimal storage and processing conditions to preserve the quality and prolong the shelf life of habanero chili powder.
References
Al-Muhtaseb, A. H., McMinn, W. A. M. and Magee, T. R. A. (2004). Water sorption isotherms of starch powders. Part 1: mathematical description of experimental data. Journal of Food Engineering, 61, 297–307. https://doi.org/10.1016/S0260-8774(03)00133-X
Araújo, A. L. de, and Pena, R. da S. (2022). Moisture desorption behavior and thermodynamic properties of pulp and seed of jambolan (Syzygium cumini). Heliyon, 8(5), e09443. https://doi.org/10.1016/j.heliyon.2022.e09443
Arslan-Tontul, S. (2020). Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. LWT - Food Science and Technology, 119, 108859. https://doi.org/10.1016/j.lwt.2019.108859
De Sá Mendes, N., Santos, M. C. P., Santos, M. C. B., Cameron, L. C., Ferreira, M. S. L. and Gonçalves, É. C. B. A. (2019). Characterization of pepper (Capsicum baccatum) - A potential functional ingredient. LWT - Food Science and Technology, 112, 108209. https://doi.org/10.1016/j.lwt.2019.05.107
De Souza, S. J. F., Alves, A. I., Vieira, É. N. R., Vieira, J. A. G., Ramos, A. M. and Telis-Romero, J. (2015). Study of thermodynamic water properties and moisture sorption hysteresis of mango skin. Food Science and Technology, 35(1), 157–166. https://doi.org/10.1590/1678-457X.6557
Getahun, E., Gabbiye, N., Delele, M. A., Fanta, S. W., Gebrehiwot, M. G., and Vanierschot, M. (2020). Effect of maturity on the moisture sorption isotherm of chili pepper (Mareko Fana variety). Heliyon, 6(8), e04608). https://doi.org/10.1016/j.heliyon.2020.e04608
Goneli, A. L. D., Corrêa, P. C., Oliveira, G. H. H. and Afonso Júnior, P. C. (2013). Water sorption properties of coffee fruits, pulped and green coffee. LWT - Food Science and Technology, 50(2), 386–391.https://doi.org/10.1016/j.lwt.2012.09.006
Guadarrama-Lezama, A.Y., Carrillo-Navas, H., Cruz-Olivares, J., Martínez-Vargas, S.L., Román-Guerrero and A., Pérez-Alonso, C. (2014). Determination of the minimum integral entropy, water sorption and glass transition temperature to establishing critical storage conditions of beetroot juice microcapsules by spray drying. Revista Mexicana de Ingeniería Química 13, 405-416.
Guillén-Velázquez, P., Cantú-Lozano, D., Rascón-Díaz, M., Jimenez-Fernández, M., & Luna Solano, G. (2022). Swelling, erosion and physicochemical characteristics of plum powder tablets obtained by spray drying. Revista Mexicana De Ingeniería Química, 21(3), Alim2867. https://doi.org/10.24275/rmiq/Alim2867
Hernández-Carrillo, J. G., Mújica-Paz, H., Welti-Chanes, J., Spatafora-Salazar, A. S., and Valdez-Fragoso, A. (2019). Sorption behavior of citric pectin films with glycerol and olive oil. Revista Mexicana de Ingeniera Quimica, 18(2), 487–500. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Hernandez
Hidar, N., Ouhammou, M., Idlimam, A., Jaouad, A., Bouchdoug, M., Lamharrar, A. and Mahrouz, M. (2018). Investigation of water adsorption and thermodynamic properties of stevia powder. Journal of Food Measurement and Characterization, 12(4), 2615–2625. https://doi.org/10.1007/s11694-018-9879-0
Kaleemullah, S. and Kailapan, R. (2004). Moisture Sorption Isotherms of Red Chillies. Biosystems Engineering, 88 (1); 95-104. https://doi.org/10.1016/j.biosystemseng.2004.01.003
Kaymak-Ertekin, F. and Gedik, A. (2004). Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT - Food Science and Technology, 37(4), 429–438. https://doi.org/10.1016/j.lwt.2003.10.012
Kurozawa, L. E., de Oliveira, R. A., Hubinger, M. D. and Park, K. J. (2015). Thermodynamic properties of water desorption of papaya. Journal of Food Processing and Preservation, 39(6), 2412–2420. https://doi.org/10.1111/jfpp.12491
Medina-Torres, N., Cuevas-Bernardino, J. C., Ayora-Talavera, T., Patrón-Vázquez, J. A., Rodríguez-Buenfil, I., and Pacheco, N. (2021). Changes in the physicochemical, rheological, biological, and sensorial properties of habanero Chili pastes affected by ripening stage, natural preservative and thermal processing. Revista Mexicana de Ingeniera Química, 20(1), 195–212. https://doi.org/10.24275/rmiq/Alim1768
Moussaoui, H., Bahammou, Y., Idlimam, A., Lamharrar, A. and Abdenouri, N. (2019). Investigation of hygroscopic equilibrium and modeling sorption isotherms of the argan products: A comparative study of leaves, pulps, and fruits. Food and Bioproducts Processing, 114, 12–22. https://doi.org/10.1016/j.fbp.2018.11.002
Muzaffar, K. and Kumar, P. (2016) Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, 291, 322-327. https://doi.org/10.1016/j.powtec.2015.12.046
Pascual-Pineda, L., Guerrero-Hernández, A., Castillo-Morales, M., Salazar, R., Jiménez-Fernández, M., and Flores-Andrade, E. (2022). Determination of the spreading pressure and shelf-life of spray-dried coffee powder: quality assurance of a water-soluble food. Revista Mexicana De Ingeniería Química, 21(3), Alim2921. https://doi.org/10.24275/rmiq/Alim2921
Pavón-García, L.M.A., Gallardo-Rivera, R., Román-Guerrero, A., Carrillo-Navas, H., Rodríguez-Huezo, M.E., Guadarrama-Lezama, A.Y., and Pérez-Alonso, C. (2015). Moisture sorption properties and storage stability conditions of a nutraceutical system microencapsulated by spray drying. Revista mexicana de ingeniería química, 14(3), 601-613. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1275
Rizvi, S. S. H. (2005). Thermodynamic properties of foods in dehydration: In Rao M.A., Rizvi S.S.H and Datta A.K, Engineering Properties of Foods. Pp. 78-84. Third edition. Taylor & Francis CRC. New York.
Sawhney, I. K., Sarkar, B. C., Patil, G. R. and Sharma, H. (2013). Moisture sorption isotherms and thermodynamic properties of whey protein concentrate powder from Buffalo skim milk. Journal of Food Processing and Preservation, 38(4), 1787-1798. https://doi.org/10.1111/jfpp.12148
Simal, S., Femenia, A., Castell-Palou, Á. and Rosselló, C. (2007). Water desorption thermodynamic properties of pineapple. Journal of Food Engineering, 80(4), 1293–1301. https://doi.org/10.1016/j.jfoodeng.2006.10.001
Sinija, V. R. and Mishra, H. N. (2008). Moisture sorption isotherms and heat of sorption of instant (soluble) green tea powder and green tea granules. Journal of Food Engineering, 86(4), 494–500. https://doi.org/10.1016/j.jfoodeng.2007.10.026
Soleimanifard, S. and Hamdami, N. (2018). Modelling of the sorption isotherms and determination of the isosteric heat of split pistachios, pistachio kernels and shells. Czech J. Food Sci., 36: 268-275. https://doi.org/10.17221/460/2016-CJFS
Viganó, J., Azuara, E., Telis, V. R. N., Beristain, C. I., Jiménez, M. and Telis- Romero, J., (2012). Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods. Thermochimica Acta, 528, 63–71. https://doi.org/10.1016/j.tca.2011.11.011
Villegas-Santiago, J., Gómez-Navarro, F., Dominguez-Niño, A., García-Alvarado, M., Salgado-Cervantes, M. and Luna-Solano, G. (2019). Effect of spray-drying conditions on moisture content and particle size of coffee extract in a prototype dryer. Revista Mexicana De Ingeniería Química, 19(2), 767-781. https://doi.org/10.24275/rmiq/Proc767
Yan, Z., Sousa-Gallagher, M. J. and Oliveira, F. A. R. (2008). Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. Journal of Food Engineering, 86(3), 342-348. https://doi.org/10.1016/j.jfoodeng.2007.10.009
Yogendrarajah, P., Samapundo, S., Devlieghere, F., De Saeger, S. and De Meulenaer, B. (2015). Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT - Food Science and Technology, 64(1), 177–188. https://doi.org/10.1016/j.lwt.2015.05.045
Woldemariam, H. W., Admassu Emire, S., Getachew Teshome, P., Toepfl, S., and Aganovic, K. (2021). Physicochemical, functional, oxidative stability and rheological properties of red pepper (Capsicum annuum L.) powder and paste. International Journal of Food Properties, 24(1), 1416–1437. https://doi.org/10.1080/10942912.2021.1969945

Copyright (c) 2023 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.