Economic evaluation of protein recovery process from Argentinian soybean extruded-expelled meals

  • C. Accoroni INTA
  • E. Godoy
  • M.A. Reinheimer
Keywords: agricultural production, soybean extruded-expelled meals, value-added manufacturing, protein products

Abstract

Soybean extruded-expelled (EE) meals are the byproduct of the soybean oil extraction process commonly used by small and medium- sized Argentinean companies. In this study, the economic feasibility of protein concentrate production from soybean EE meals was evaluated. A processing daily capacity of 18 ton of EE meals was considered, resulting in an annual production of 1,500 ton of protein concentrate. The proposed methodology considered a pH change process consisting of 3 cycles of alkaline extraction at 60 ºC followed by isoelectric precipitation at low temperature using hydrochloric acid, which resulted in a final product with a protein content of 75 % (db) and a productivity of 0.28 kg product/kg soybean EE meals. To analyze a practical case, proposed production was carried out as an extension of a typical medium-sized soybean extrusion- expelling plant. As a result, the necessary capital investment was estimated to be US$2.7 million. Additional financial performance indicators were computed, including net present value and internal rate of return, and it was concluded that the proposal to obtain a protein concentrate from soybean EE meals was economically viable on an industrial scale if sale prices are above 2,267 US$/ton.

References

Accoroni, C. (2015). Mathematical modeling of the soybean protein concentrate production process. Master Thesis. Universidad Tecnológica Nacional. http://hdl.handle.net/20.500.12123/5144

Accoroni, C., Godoy, E., Reinheimer, M.A. (2020). Performance evaluation of protein recovery from Argentinian soybean extruded-expelled meals under different operating conditions. Journal of Food Engineering 274, 109849. https://doi.org/10.1016/j.jfoodeng.2019.109849

Alomia-Hinojosa, V., Speelman, E. N., Thapa, A., Wei, H. E., McDonald, A. J., Tittonell, P., Groot, J. C. (2018). Exploring farmer perceptions of agricultural innovations for maize-legume intensification in the mid-hills region of Nepal. International Journal of Agricultural Sustainability 16(1), 74-93. https://doi.org/10.1080/14735903.2018.1423723

Campbell M.F., Fiala R.J., Wideman J.D., Rasche, J.F. (1981). Bland vegetable protein product and method of manufacture. US Patent 4,265,925.

Cano-Sampedro, E., Pérez-Pérez, V., Osorio-Díaz, P., Camacho-Díaz, B., Tapia-Maruri, D., Mora-Escobedo, R., & Alamilla-Beltrán, L. (2021). Germinated soybean protein hydrolysate: ionic gelation encapsulation and release under colonic conditions. Revista Mexicana De Ingeniería Química 20(2), 725-737. https://doi.org/10.24275/rmiq/Alim2319

Carvajal, M. N. (2000). Estudio del Sembrado en Procesos de Cristalización por Lotes. Tesis de Maestría en Ciencias en Ingeniería Química, Instituto Tecnológico de Celaya, México. Comtrade (2021). UN Comtrade Database. https://comtrade.un.org/

Endres, J.G. (2001). Soy Proteins Products: Characteristics, Nutritional Aspects and Utilization. AOCS Press and the Soy Protein
Council, Champaign, Il.

Gerliani, N., Hammami, R., & Aïder, M. (2019). Assessment of the extractability of proteincarbohydrate concentrate from soybean meal under acidic and alkaline conditions. Food Bioscience 28, 116-124. https://doi.org/10.1016/j.fbio.2019.01.004

Heinemann, J. A., Massaro, M., Coray, D. S., Agapito-Tenfen, S. Z., Wen, J. D. (2014). Sustainability and innovation in staple crop production in the US Midwest. International Journal of Agricultural Sustainability 12(1), 71-88. https://doi.org/10.1080/14735903.2013.806408


Heywood, A.A. (2001). Characterization and Utilization of Extruded-Expelled Soybean Flours. Ph.D. Thesis. Iowa State University. https://lib.dr.iastate.edu/rtd/646

Johnson, L.A. (2008). Oil recovery from soybeans. In: Soybeans: Chemistry, Production, Processing, and Utilization (L.A. Johnson, P.J. White and R. Galloway, eds), Pp. 331-375. AOCS Press, Urbana, Il. https://doi.org/10.1016/C2015-0-02416-9

Juan, N.A., Massigoge J.I., Errasquin L., Méndez J.M., Ochandio D.C., Saavedra A.E., Paolilli M.C., Alladio, R.M., Accoroni C., Behr E.F. (2015). Calidad de la soja procesada y del expeller producido por la industria de extrusado prensado en Argentina. Ediciones INTA. https://www.produccion-animal.com.
ar/tablas_composicion_alimentos/138-Calidad-Soja-Procesada.pdf

Kolar C. W., Richert S. H., Decker C. D., Steinke F. H., Vander Zanden R. J. (1985). Isolated soy protein. New Protein Foods 5, 259-299.

Le Clech, N, Fillat-Castejón, C. (2017). International aggregate agricultural supply for grain and oilseed: The effects of efficiency and technological change. Agribusiness 33, 569-585. https://doi.org/10.1002/agr.21514

Li P., Gasmalla M.A.A., Zhang W., Liu J., Bing R., Yang R. (2016). E ects of roasting temperatures and grinding type on the yields of oil and protein
obtained by aqueous extraction processing. Journal of Food Engineering 173, 15-24. https://doi.org/10.1016/j.jfoodeng.2015.10.031

Monroy-Rodríguez, I., Gutiérrez-López, G., Hernández-Sánchez, H., López-Hernández, R., Cornejo Mazón, M., Dorántes-Álvarez, L., & Alamilla-Beltrán, L. (2021). Surface roughness and textural image analysis, particle size and stability of microparticles obtained by microfluidization of soy protein isolate
aggregates suspensions. Revista Mexicana de Ingeniería Química 20(2), 787-805. https: //doi.org/10.24275/rmiq/Alim2311

Mustakas G., Sohns V. (1976). Soy processes, equipment, capital, and processing costs. FCS Resolution Republic Farmer Cooperative Service US Department Agriculture 33, 18. https://pubag.nal.usda.gov/download/29440/PDF

Ono M., Soesanto G., Wallenstrom A. (2021). Protein purification to produce edible soybean protein. Senior Design Reports (CBE) 130. University of Pennsylvania School of Engineering and Applied Science. Department of Chemical and Biomolecular Engineering. https://repository.upenn.edu/cbe_
sdr/130/

Preece K.E., Hooshyar N., Zuidam N.J. (2017). Whole soybean protein extraction processes: a review. Innovative Food Science & Emerging Technologies 43, 163-172. https://doi.org/10.1016/j.ifset.2017.07.024

Sanders D.R., Altman I.J. and Ferraro N. (2014). Technological advances in soybean yields: A disaggregated approach. Agribusiness 30, 207-221. https://doi.org/10.1002/agr.21348

Seghezzo, L., Huaranca, L. L., Vega, M. L., Jeckeln, G. V., Avalos, M. A., Iribarnegaray, M. A., Volante, J. N., Mónico Serrano, F.
H., Mastrangelo, M., Sun, Z., Müller, D. (2020). Sustainable farmers, deficient State? Self-reported agricultural sustainability in the Argentine Chaco region. International Journal of Agricultural Sustainability 18(6), 473-491.https://doi.org/10.1080/14735903.2020.1793645

Sunley, N.C. (1995). Soya Protein Isolate Production by Various Methods. MSc Thesis. University of Natal. http://hdl.handle.net/10413/5055

Wang H., Johnson L.A.,Wang T. (2004). Preparation of soy protein concentrate and isolate from extruded-expelled soybean meals. Journal of the American Oil Chemists’ Society 81(7), 713-717. https://doi.org/10.1007/s11746-004-966-8
Published
2023-01-31
How to Cite
Accoroni, C., Godoy, E., & Reinheimer, M. (2023). Economic evaluation of protein recovery process from Argentinian soybean extruded-expelled meals. Revista Mexicana De Ingeniería Química, 22(1), Alim2677. https://doi.org/10.24275/rmiq/Alim2677
Section
Food Engineering