REFRIGERATED STORAGE OF HIGH HYDROSTATIC PRESSURE TREATED PITAYA (Stenocereus pruinosus) JUICE

  • B. Quiroz-González
  • M. C. Ybarra-Moncada
  • V. S. Rodriguez-Martinez
  • J. S. Welti-Chanes
  • M. R. García-Mateos
  • J. Corrales-García
  • M. C. Ybarra-Moncada
  • G. Leyva-Ruelas
  • J. A. Torres
Keywords: antioxidant, pitaya juice, sensory quality, refrigerated storage

Abstract

This work focuses on HHP and storage effects on pectin methylesterase (PME) activity, native microflora, and the physicochemical, nutraceutical, and sensory properties of non-acidified pitaya juice. After 550 and 600 MPa treatments for 16 and 12 min, respectively, pitaya juice was stored 60 d at 4±1°C. No aerobic mesophiles were found immediately after HHP treatments, and during storage, counts remained below 2 Log10 CFU mL‑1. In HHP‑treated juice, yeast and molds were undetectable and remained so during storage. After HHP treatments and during storage, no changes were observed in total soluble solids (9.8‑10.0 °Bx), luminosity (4.3‑4.4 %), and chroma (18.9-20.7). Depending on treatment condition, HHP lowered PME activity by 59-63 %. A further reduction reaching 25 % was observed after storage. Acidity, phenolic compounds, betalains concentrations, and antioxidant activity were not affected by HHP but a 43, 10, 14, and 5 % decrease, respectively, was observed after 60 d of storage. Finally, sensorial acceptability of juices was not affected by HHP but increased during storage reflecting an increased sweetness perception associated with lower acidity values. HHP is thus a viable alternative to produce non-acidified pitaya juice with a 60‑d refrigerated distribution shelf life.

Author Biography

V. S. Rodriguez-Martinez
   

References

Akgün, M.P. y Ünlütürk, S. (2017). Effects of ultraviolet light emitting diodes (leds) on microbial and enzyme inactivation of apple juice. International Journal of Food Microbiology 260, 65–74.

Alpas, H., Kalchayanand, N., Bozoglu, F. y Ray, B. (2000). Interactions of high hydrostatic pressure, pressurization temperature and ph on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. International Journal of Food Microbiology 60, 33-42.

AOAC (1995). Official methods of analysis (15th ed.). Association of Official Analytical Chemists, Gaithesburg, MD.

Arnaud, V.R., Santiago, G.P. y Bautista, P.B. (1997) Agroindustria de algunos frutos. En: Suculentas mexicanas cactáceas, (P.L. Rodríguez,ed.), Pp. 78-85. CVS Publishers, Ciudad de México, México.

Azeredo, H.M.C. (2009). Betalains: Properties, sources, applications, and stability - a review. International Journal of Food Science and Technology 44, 2365-2376.

Bevilacqua, A., Petruzzi, L., Perricone, M., Speranza, B., Campaniello, D., Sinigaglia, M. y Corbo, M.A. (2018). Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Comp Rev Food Sci Food Safety 17, 1-62.

Bravo, H.H. y Sánchez-Mejorada, H. (1991). Las cactáceas de méxico (3rd ed.). Universidad Nacional Autónoma de México, Ciudad de México, México.

Brockington, S.F., Yang, Y., Gandia‐Herrero, F., Covshoff, S., Hibberd, J.M., Sage, R.F., Wong, G.K., Moore, M.J. y Smith, S.A. (2015). Lineage‐specific gene radiations underlie the evolution of novel betalain pigmentation in caryophyllales. New Phytol 207, 1170-1180.

Buckow, R. y Terefe, N.S. (2017) High-pressure processing effects on endogenous enzymes in fruits and vegetables. En: High pressure processing of fruit and vegetable products, Pp. 39-62. CRC Press, Boca Raton, FL.

Bull, M.K., Zerdin, K., Howe, E., Goicoechea, D., Paramanandhan, P., Stockman, R., Sellahewa, J., Szabo, E.A., Johnson, R.L. y Stewart, C.M. (2004). The effect of high pressure processing on the microbial, physical and chemical properties of valencia and navel orange juice. Innovative Food Science & Emerging Technologies 5, 135-149

Buxbaum, F. (1961). Die entwicklungslinien der tribes pachycereeae f. Buxb. (cactaceae-cereoideae). Botan Studies 12, 1-107.

Cao, X., Bi, X., Huang, W., Wu, J., Hu, X. y Liao, X. (2012). Changes of quality of high hydrostatic pressure processed cloudy and clear strawberry juices during storage. Innovative Food Science and Emerging Technologies 16, 181-190.

Cheftel, J.C. (1995). Review: High-pressure, microbial inactivation and food preservation. Food Science and Technology International 1, 75-90.

García-Cruz, L., Dueñas, M., Santos-Buelgas, C., Valle-Guadarrama, S. y Salinas-Moreno, Y. (2017). Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (stenocereus spp) fruit from two species (s. Pruinosus and s. Stellatus). Food Chemistry 234, 111-118.

García-Cruz, L., Valle-Guadarrama, S., Salinas-Moreno, Y. y Luna-Morales, C.d.C. (2016). Postharvest quality, soluble phenols, betalains content, and antioxidant activity of stenocereus pruinosus and stenocereus stellatus fruit. Postharvest Biology and Technology 111, 69-76.

Garcia-Palazon, A., Suthanthangjai, W., Kajda, P. y Zabetakis, I. (2004). The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (rubus idaeus) and strawberry (fragaria x ananassa). Food Chemistry 88, 7-10.

Garcia, E.F., de Oliveira Araújo, A., Luciano, W.A., de Albuquerque, T.M.R., de Oliveira Arcanjo, N.M., Madruga, M.S., dos Santos Lima, M., Magnani, M., Saarela, M. y de Souza, E.L. (2018). The performance of five fruit‐derived and freeze‐dried potentially probiotic lactobacillus strains in apple, orange, and grape juices. Journal of the Science of Food and Agriculture 98, 5000-5010.

González-Agüero, M., Tejerina Pardo, L., Zamudio, M., Contreras, C., Undurraga, P. y Defilippi, B. (2016). The unusual acid-accumulating behavior during ripening of cherimoya (annona cherimola mill.) is linked to changes in transcription and enzyme activity related to citric and malic acid metabolism. Molecules 21, 1-16.

Guerrero-Beltrán, J.Á., Barbosa-Cánovas, G.V. y Welti-Chanes, J. (2011). High hydrostatic pressure effect on natural microflora, saccharomyces cerevisiae, escherichia coli, and listeria innocua in navel orange juice. International Journal of Food Engineering 7, 1-16.

Hernández-Montes, A. (2007). Evaluación sensorial de productos agroalimentarios Universidad Autónoma Chapingo, Estado de México, México.

Huang, H.W., Lung, H.M., Yang, B.B. y Wang, C.Y. (2014). Responses of microorganisms to high hydrostatic pressure processing. Food Control 40, 250-259.

Juarez-Enriquez, E., Salmeron-Ochoa, I., Gutierrez-Mendez, N., Ramaswamy, H.S. y Ortega-Rivas, E. (2015). Shelf life studies on apple juice pasteurised by ultrahigh hydrostatic pressure. LWT - Food Science and Technology 62, 915–919.

Khan, M.I. y Giridhar, P. (2015). Plant betalains: Chemistry and biochemistry. Phytochemistry 117, 267-295.

Lado, B.H. y Yousef, A.E. (2002). Alternative food-preservation technologies: Efficacy and mechanisms. Microbes and Infection 4, 433-440.

Leyva-Daniel, D.E., Escobedo-Avellaneda, Z., Villalobos-Castillejos, F., Alamilla-Beltrán, L. y Welti-Chanes, J. (2017). Effect of high hydrostatic pressure applied to a mexican honey to increase its microbiological and functional quality. Food and Bioproducts Processing 102.

Liu, Y., Zhao, X.Y., Zou, L. y Hu, X.S. (2012). Effect of high hydrostatic pressure on overall quality parameters of watermelon juice. Food Science and Technology International 19, 197-207.

Macías-Ojeda, D.A., Cervantes-Arista, C., Pelayo-Zaldívar, C., Escalona-Buendía, H.B., Alia-Tejacal, I., Mendoza-Espinoza, J.A., Rodríguez Verástegui, L.L. y Díaz de León-Sánchez, F. (2019). Quality and novel indicators of commercial life in valencia oranges (citrus sinensis osbeck). Revista Mexicana de Ingeniería Química 18, 979-994.

Mezey, J. y Mezeyová, I. (2018). Changes in the levels of selected organic acids and sugars in apple juice after cold storage. Czech Journal of Food Sciences 36, 2-7.

Morales-de la Peña, M., Salinas-Roca, B., Escobedo-Avellaneda, Z., Martín-Belloso, O. y Welti-Chanes, J. (2018). Effect of high hydrostatic pressure and temperature on enzymatic activity and quality attributes in mango puree varieties (cv. Tommy atkins and manila). Food and Bioprocess Technology 11, 1211–1221.

Ochoa-Velasco, C.E. y Guerrero Beltrán, J.A. (2012). Ultraviolet-c light effect on pitaya (stenocereus griseus) juice. Journal of Food Research 1, 60-70.

Ochoa-Velasco, C.E. y Guerrero Beltrán, J.A. (2013). Short-wave ultraviolet-c light effect on pitaya (stenocereus griseus) juice inoculated with zygosaccharomyces bailii. Journal of Food Engineering 117, 34-41.

Oey, I., Lille, M., van Loey, A. y Hendrickx, M. (2008). Effect of high pressure processing on colour, texture and flavour of fruit and vegetable-based food products: A review. Trends in Food Science & Technology 19, 320-328.

Pérez-Grijalba, B., García-Zebadúa, J.C., Ruíz-Pérez, V.M., Téllez-Medina, D.I., García-Pinilla, S., Guzmán-Gerónimo, R.I. y Mora-Escobedo, R. (2018). Biofunctionality, colorimetric coefficients and microbiological stability of blackberry (rubus fructicosus var. Himalaya) juice under microwave/ultrasound processing. Revista Mexicana de Ingeniería Química 17, 13-28.

Pérez-Loredo, M.G., García-Ochoa, F. y Barragán-Huerta, B.E. (2016). Comparative analysis of betalain content in stenocereus stellatus fruits and other cactus fruits using principal component analysis. International Journal of Food Properties 19, 326–338.

Pimienta-Barrios, E. y Nobel, P.S. (1994). Pitaya (stenocereus spp., cactaceae): An ancient and modern fruit crop of mexico. Economic Botany 48, 76-83.

Quiroz-González, B., García-Mateos, M.d.R., Corrales-García, J. y Colinas-León, M.T.B. (2018). Pitaya (stenocereus spp.): An under-utilized fruit. Journal of the Professional Association for Cactus Development In press.

Quiroz-González, B., Rodríguez-Martínez, V., García-Mateos, M.d.R., Torres, J.A. y Welti-Chanes, J. (2018). High hydrostatic pressure inactivation and recovery study of listeria innocua and saccharomyces cerevisiae in pitaya (stenocereus pruinosus) juice. Innovative Food Science & Emerging Technologies 50, 169-173.

Ramírez-Ramos, M., García-Mateos, M., Corrales-García, J., Ybarra-Moncada, C. y Castillo-González, A.M. (2015). Antioxidant compounds in prickly pear (opuntia sp.) pigmented varieties. Revista Fitotecnia Mexicana 38, 349 - 357.

Rosas-Benítez, A., Trujillo-Cárdenas, L., Valle-Guadarrama, S., Salinas-Moreno, Y. y García-Cruz, L. (2016). Quality attributes of pitaya (stenocereus pruinosus) fruit handled in postharvest with and without thorns under refrigerated storage. Revista Chapingo, Serie Horticultura XXII, 191-207.

Sánchez-Rangel, J.C., Benavides, J., Heredia, J.B., Cisneros-Zevallos, L. y Jacobo-Velázquez, D.A. (2013). The folin-ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal Meth 5, 5990–5999.

Sandate-Flores, L., Rostro-Alanis, M.D.J., Mancera-Andrade, E.I., Esquivel-Hernandez, D.A., Brambila-Paz, C., Parra-Saldívar, R., Welti-Chanes, J., Escobedo-Avellaneda, Z. y Rodríguez-Rodríguez, J. (2017). Using high hydrostatic pressures to retain the antioxidant compounds and to reduce the enzymatic activity of a pitaya–pineapple (stenocereus sp.–fragaria ananassa) beverage. Journal of Food Science and Technology 54, 611-619.

Sokołowska, B., Skapska, S., Niezgoda, J., Rutkowska, M., Dekowska, A. y Rzoska, S.J. (2014). Inactivation and sublethal injury of escherichia coli and listeria innocua by high hydrostatic pressure in model suspensions and beetroot juice. High Pressure Research 34, 147-155.

Tay, A., Shellhammer, T.H., Yousef, A.E. y Chism, G.W. (2003). Pressure death and tailing behavior of listeria monocytogenes strains having different barotolerances. Journal of Food Protection 66, 2057-2061.

Valdivia-Nájar, C.G., Martín-Belloso, O. y Soliva-Fortuny, R. (2018). Impact of pulsed light treatments and storage time on the texture quality of fresh-cut tomatoes. Innovative Food Science and Emerging Technologies 45, 29-35.

Varela-Santos, E., Ochoa-Martinez, A., Tabilo-Munizaga, G., Reyes, J.E., Pérez-Won, M., Briones-Labarca, V. y Morales-Castro, J. (2012). Effect of high hydrostatic pressure (hhp) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science & Emerging Technologies 13, 13-22.

Villarreal-Lozoya, J.E., Lombardini, L. y Cisneros-Zevallos, L. (2007). Phytochemical constituents and antioxidant capacity of different pecan [carya illinoinensis (wangenh.) k. Koch] cultivars. Food Chemistry 102, 1241-1249.

Wang, Z. y Goonewardene, L.A. (2004). The use of mixed models in the analysis of animal experiments with repeated measures data. Can J Anim Sci 84, 1–11.

Xu, X., Deng, J., Luo, D., Bao, Y., Liao, X., Gao, H. y Wu, J. (2018). Comparative study of high hydrostatic pressure and high temperature short time processing on quality of clear and cloudy se-enriched kiwifruit juices. Innovative Food Science and Emerging Technologies 49, 1-12.

Yáñez-López, L., Domínguez, J., Fajardo, M.C., Malpica, F., Soriano, J., Pelayo, M.A., Armella, F. y Diaz-de-León, F. (2005). Quality attributes of different types of cactus pitaya fruits (stenocereus griseus). Acta Horticulturae 682, 645-650.

Zou, H., Lin, T., Bi, X., Zhao, L., Wang, Y. y Liao, X. (2016). Comparison of high hydrostatic pressure, high-pressure carbon dioxide and high-temperature short-time processing on quality of mulberry juice. Food and Bioprocess Technology 9, 217-231.

Published
2019-07-20
How to Cite
Quiroz-González, B., Ybarra-Moncada, M., Rodriguez-Martinez, V., Welti-Chanes, J., García-Mateos, M., Corrales-García, J., Ybarra-Moncada, M., Leyva-Ruelas, G., & Torres, J. (2019). REFRIGERATED STORAGE OF HIGH HYDROSTATIC PRESSURE TREATED PITAYA (Stenocereus pruinosus) JUICE. Revista Mexicana De Ingeniería Química, 19(1), 387-399. https://doi.org/10.24275/rmiq/Alim588
Section
Food Engineering