STUDY OF AGITATION, COLOR AND STRESS LIGHT VARIABLES ON SPIRULINA PLATENSIS CULTURE IN A VERTICAL STIRRED REACTOR IN STANDARD MEDIUM
Abstract
Spirulina platensisis a helical-shaped photosynthetic cyanobacterium. For its cultivation, it depends on light intensity, nutrients, pH, cell density, temperature, among others. Microalgae are capable of growing in open and closed reactors. In the present work, it was studied microalgaeSpirulina platensisgrowth in a stirred tank reactor (STR), evaluating stirring rate, color and light stress. Spirulinaplatensiswas kept in flasks with Schlösser solution at room temperature, orbital shaker and fluorescent lamps. The operating conditions of stirred vertical reactors (vertical axis) were: LED light externally adhered to the reactor walls, 2.5 L of Schlösser solution inoculated with Spirulina platensisresulting in an initial concentration of 0.15 OD and four Rushton agitators. Within the study of rate variable, the highest rate of 114 rpm, showed a productivity (P) of 2.08 mgL-1h-1, concerning light color variable a high growth was observed in white light with a productivity of 2.85 mgL-1h-1and regarding stress variable, Flash function showed a productivity 41% lower than standard (white light). It was shown that stirring rate has a positive influence and light stress affects negatively the microalgae growth.
References
Arruda, R., Brito, A., da Silva, R., & Moraes, I. (2009). Fermentação de Spirulina platensis sob condições naturais de temperatura e insolação. Revista Saúde, 3(3), 16–19. Retrieved from http://www.revistas.ung.br/index.php/saude/article/download/124/549
Avila-Leon, I., Chuei Matsudo, M., Sato, S., & de Carvalho, J. C. M. (2012). Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. Journal of Applied Microbiology, 112(6), 1086–1094. https://doi.org/10.1111/j.1365-2672.2012.05303.x
Bautista-Monroy, S. S., Salgado-Ramírez, J. C., Téllez-Jurado, A., Ramírez-Vargas, M. R., Gómez-Aldapa, C. A., Pérez-Viveros, K. J., Medina-Moreno, S.A., Cadena-Ramírez, A. (2019). Hydrodinamic characterization in a raceway bioreactor with different stirrers. Revista Mexicana de Ingeniería Química, 18(2), 605–619. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Bautista
Bezerra, R. P., Matsudo, M. C., Converti, A., Sato, S., & De Carvalho, J. C. M. (2008). Influence of ammonium chloride feeding time and light intensity on the cultivation of Spirulina (Arthrospira) platensis. Biotechnology and Bioengineering, 100(2), 297–305. https://doi.org/10.1002/bit.21771
Colla, L. M., Oliveira Reinehr, C., Reichert, C., & Costa, J. A. V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), 1489–1493. https://doi.org/10.1016/j.biortech.2005.09.030
Costa, J. A. V., Colla, L. M., & Duarte Filho, P. F. (2004). Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technology, 92(3), 237–241. https://doi.org/10.1016/j.biortech.2003.09.013
Costa, J. A. V., Colla, L. M., Duarte Filho, P. F., Kabke, K., & Weber, A. (2002). Modelling of Spirulina platensis growth in fresh water using response surface methodology. World Journal of Microbiology & Biotechnology, 18, 603–607. https://doi.org/10.1590/S1517-83822011000100046
Danesi, E.D.G., Rangel-Yagui, C. O., Carvalho, J. C. M., & Sato, S. (2004). Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy, 26(4), 329–335. https://doi.org/10.1016/S0961-9534(03)00127-2
Danesi, E.D.G., Rangel-Yagui, C. O., Sato, S., & Carvalho, J. C. M. (2011). Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Brazilian Journal of Microbiology, 42(1), 362–373. https://doi.org/10.1590/S1517-83822011000100046
Del Campo, J. A., García-González, M., & Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied Microbiology and Biotechnology, 74(6), 1163–1174. https://doi.org/10.1007/s00253-007-0844-9
Ferreira, L. S., Rodrigues, M. S., Converti, A., Sato, S., & Carvalho, J. C. M. (2012a). Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: Use of no-cost CO2 from ethanol fermentation. Applied Energy, 92, 379–385. https://doi.org/10.1016/j.apenergy.2011.11.019
Ferreira, L. S., Rodrigues, M. S., Converti, A., Sato, S., & Carvalho, J. C. M. (2012b). Kinetic and growth parameters of Arthrospira (Spirulina) platensis cultivated in tubular photobioreactor under different cell circulation systems. Biotechnology and Bioengineering, 109(2), 444–450. https://doi.org/10.1002/bit.23315
Hongsthong, A., Senachak, J., & Nakamoto, H. (2017). Genome- and Proteome-Wide Analyses for Targeted Manipulation and Enhancement of Bioproducts in Cyanobacteria. In Algal Green Chemistry (pp. 39–64). Elsevier. https://doi.org/10.1016/B978-0-444-63784-0.00003-5
Johansen, M. N. (2012). Microalgae: Biotechnology, Microbiology and Energy. (M. N. Johansen, Ed.) (Vol. 1). New York: Nova Science Publishers, Inc.
Liu, H., Chen, H., Wang, S., Liu, Q., Li, S., Song, X., … Jia, L. (2018). Optimizing light distribution and controlling biomass concentration by continuously pre-harvesting Spirulina platensis for improving the microalgae production. Bioresource Technology, 252 (December 2017), 14–19. https://doi.org/10.1016/j.biortech.2017.12.046
May-Cua, E. R., Toledano-Thompson, T., Alzate-Gaviria, L. M., & Barahona-Pérez, L. F. (2019). A cylindrical-conical photobioreactor and a sludge drying bed as an efficient system for cultivation of the green microalgae Coelastrum sp. and dry biomass recovery. Revista Mexicana de Ingeniería Química, 18(1), 1–11. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/May
Moheimani, N. R., McHenry, M. P., de Boer, K., & Bahri, P. A. (2015). Biomass and Biofuels from Microalgae. (N. R. Moheimani, M. P. McHenry, K. de Boer, & P. A. Bahri, Eds.) (Vol. 2). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-16640-7
Morocho-Jácome, A. L., Mascioli, G. F., Sato, S., & de Carvalho, J. C. M. (2015). Ferric chloride flocculation plus carbon adsorption allows to reuse spent culture medium of Arthrospira platensis. Engineering in Life Sciences, 15(2), 208–219. https://doi.org/10.1002/elsc.201400040
Morocho Jácome, A. L., Converti, A., Sato, S., & Monteiro de Carvalho, J. C. (2012). Kinetic and thermodynamic investigation of Arthrospira (Spirulina) platensis fed-batch cultivation in a tubular photobioreactor using urea as nitrogen source. Journal of Chemical Technology & Biotechnology, 87(11), 1574–1583. https://doi.org/10.1002/jctb.3795
Rajesh, K., Rohit, M. V., & Venkata Mohan, S. (2017). Microalgae-Based Carotenoids Production. In Algal Green Chemistry (pp. 139–147). Elsevier. https://doi.org/10.1016/B978-0-444-63784-0.00007-2
Ravelonandro, P. H., Ratianarivo, D. H., Joannis-Cassan, C., Isambert, A., & Raherimandimby, M. (2008). Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical Technology & Biotechnology, 83(6), 842–848. https://doi.org/10.1002/jctb.1878
Ravelonandro, P. H., Ratianarivo, D. H., Joannis-Cassan, C., Isambert, A., & Raherimandimby, M. (2011). Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and Bioproducts Processing, 89(3), 209–216.
https://doi.org/10.1016/j.fbp.2010.04.009
Robles-Heredia, J. C., Sacramento-Rivero, J. C., Ruiz-Marín, A., Baz-Rodríguez, S., Canedo-López, Y., & Narváez-García. (2016). Evaluación de crecimiento celular, remoción de nitrógeno y producción de lípidos por Chlorella vulgaris a diferentes condiciones de aireación en dos tipos de fotobiorreactores anulares. Revista Mexicana de Ingeniería Química, 15(2), 361–377.
Rodríguez Mata, A. E., Flores-Colunga, G., Rangel-Peraza, J. G., Lizardi-Jiménez, M. A., & Amabilis-Sosa, L. E. (2019). Estimation of states in photosynthetic systems via chained observers: design for a tertiary wastewater treatment by using Spirulina maxima on photobiorreactor. Revista Mexicana de Ingeniería Química, 18(1), 273–287. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Rodriguez
Sassano, C. E. N., Gioielli, L. a., Ferreira, L. S., Rodrigues, M. S., Sato, S., Converti, a., & Carvalho, J. C. M. (2010). Evaluation of the composition of continuously-cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass and Bioenergy, 34(12), 1732–1738.
https://doi.org/10.1016/j.biombioe.2010.07.002
Schlosser, U. G. (1982). Sammlung von Algenkulturen. Ber. Deutsm. Bot. Ges. Bd., 95(1), 181–276. https://doi.org/10.1111/j.1438-8677.1982.tb02862.x
Sonani, R. R., Rastogi, R. P., & Madamwar, D. (2017). Natural Antioxidants From Algae. In Algal Green Chemistry (pp. 91–120). Elsevier. https://doi.org/10.1016/B978-0-444-63784-0.00005-9
Vonshak, A. (2002). Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Taylor & Francis. Retrieved from https://books.google.com.mx/books?id=6g9ydnbJKUYC
Walter, A., de Carvalho, J. C., Soccol, V. T., de Faria, A. B. B., Ghiggi, V., & Soccol, C. R. (2011). Study of phycocyanin production from Spirulina platensis under different light spectra. Brazilian Archives of Biology and Technology, 54(4), 675–682. https://doi.org/10.1590/S1516-89132011000400005
Wang, C. Y., Fu, C. C., & Liu, Y. C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1), 21–25. https://doi.org/10.1016/j.bej.2007.03.004

Copyright (c) 2019 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.