ON THE INTERACTION OF THIOPHENE AND ZEOLITE-Y IN THE THIOPHENE-BASED OLIGOMERS FORMATION

  • V. M. Rivera
  • A. Suarez-Méndez
  • L. I. Pascual-Mathey
  • A. Gutierrez
  • M. A. Vera
  • G. A. Fuentes
Keywords: Thiophene, Zeolite Y, Brönsted acid sites, Oligomers

Abstract

Due to the inconsistencies in the literature about the structure of thiophene oligomers, formed by the interaction between thiophene and the Brönsted acid sites of zeolite Y, the direct analysis of these oligomeric species is fundamental, mainly to understand how they are made up and their correct structure. The materials used were zeolite Y in its protonic (HY) and sodic (NaY) form. The interaction between thiophene and the zeolitic material was performed by the adsorption of thiophene at room temperature using a solution of thiophene in n-octane (100-700 ppmw), leading to the formation of cationic thiophene oligomers that are trapped inside the cavities of HY, among other non-oligomeric species. The thiophene-zeolite Y interaction occurs through the Brönsted acid sites by two possible routes: i) by electrophilic attack to the pair of free electrons in sulfur, forming oligothiophene whose size is limited by the structure of zeolite and, ii) by interaction with the α-carbon that leads to the formation of thiols and hydrocarbons with carbons with sp3and H2S hybridization.

References

Bäuerle, P. (2008). The Synthesis of Oligothiophenes. In Fichou, D. (Ed.). Handbook of oligo-and polythiophenes. John Wiley & Sons.

Becker, R. S., Seixas de Melo, J., Macanita, A. L., y Elisei, F. (1996). Comprehensive evaluation of the absorption, photophysical, energy transfer, structural, and theoretical properties of α-oligothiophenes with one to seven rings. The Journal of Physical Chemistry, 100(48), 18683-18695.

Bordiga, S., Ricchiardi, G., Spoto, G., Scarano, D., Carnelli, L., Zecchina, A., & Areán, C. O. (1993). Acetylene, methylacetylene and ethylacetylene polymerization on H-ZSM5: A spectroscopic study. Journal of the Chemical Society, Faraday Transactions, 89(11), 1843-1855.

Breck, D. W. (1974). Zeolite Molecular Sieves: Structure, Chemistry and Use, Jonh Wiley and Sons. Inc., New Ypirk, Malabar, Flórida.

Brütting, W. (Ed.). (2006). Physics of organic semiconductors. John Wiley & Sons.

Caspar, J. V., Ramamurthy, V., & Corbin, D. R. (1991). Preparation and spectroscopic characterization of polarons and bipolarons of thiophene oligomers within the channels of pentasil zeolites: the evolution of organic radical ions into conducting polymers. Journal of the American Chemical Society, 113(2), 600-610.

Cerqueira, H. S., Caeiro, G., Costa, L., & Ribeiro, F. R. (2008). Deactivation of FCC catalysts. Journal of Molecular Catalysis A: Chemical, 292(1-2), 1-13.

Chica, A., Strohmaier, K. G., & Iglesia, E. (2005). Effects of zeolite structure and aluminum content on thiophene adsorption, desorption, and surface reactions. Applied Catalysis B: Environmental, 60(3-4), 223-232.

Colín-Luna, J. A., Medina-Mendoza, A. K., De los Reyes, J. A., Escobar, J., Montoya de la Fuente, J. A. & Suarez P., R. (2013). Effect of Si/Al ratio in deep hydrodesulfurization of Pt/Al-MCM41 catalyts. Revista Mexicana de Ingeniería Química, 12(2), 271-282.

Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., & Brédas, J. L. (2007). Charge transport in organic semiconductors. Chemical reviews, 107(4), 926-952.

Cruz-Ortiz, B. R., Díaz-Jiménez, L., Cortés-Hernández, D. A. & Múzquiz-Ramos, E. M. (2017). TiO2 catalysts used in claus processes: deactivation causes and catalytic activity. Revista Mexicana de Ingeniería Química, 16(1), 229-236.

Garcia, C. L., & Lercher, J. A. (1992). Adsorption and surface reactions of thiophene on ZSM 5 zeolites. The Journal of Physical Chemistry, 96(6), 2669-2675.

Geobaldo, F., Palomino, G. T., Bordiga, S., Zecchina, A., & Areán, C. O. (1999). Spectroscopic study in the UV-Vis, near and mid IR of cationic species formed by interaction of thiophene, dithiophene and terthiophene with the zeolite HY. Physical Chemistry Chemical Physics, 1(4), 561-569.

Hernández-Maldonado, A. J., & Yang, R. T. (2004). Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu (I)− Y zeolites. Journal of the American Chemical Society, 126(4), 992-993.

Hernández-Maldonado, A. J., Stamatis, S. D., Yang, R. T., He, A. Z., & Cannella, W. (2004). New sorbents for desulfurization of diesel fuels via π complexation: layered beds and regeneration. Industrial & Engineering Chemistry Research, 43(3), 769-776.

Ma, X., Sun, L., & Song, C. (2002). A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catalysis today, 77(1-2), 107-116.

Mishra, A., Ma, C. Q., Segura, J. L., & Bäuerle, P. (2009). Functional oligothiophene-based materials: nanoarchitectures and applications. In Perepichka, I. F., & Perepichka, D. F. (Eds.). (2009). Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, 2 Volume Set. John Wiley & Sons. Pp 1-155.

Pang, X., Zhang, Li., Sun, S., Liu, T. & Gao, X., (2007). Effects of metal modifications of Y zeolites on sulfur reduction performance in fluid catalytic cracking process. Catalysis Today, 125(3-4), 173–177.

Schulz, H., Böhringer, W., Ousmanov, F., & Waller, P. (1999a). Refractory sulfur compounds in gas oils. Fuel Processing Technology, 61(1-2), 5-41.

Schulz, H., Böhringer, W., Waller, P., & Ousmanov, F. (1999b). Gas oil deep hydrodesulfurization: refractory compounds and retarded kinetics. Catalysis Today, 49(1-3), 87-97.

Shan, H. H., Li, C. Y., Yang, C. H., Zhao, H., Zhao, B. Y., & Zhang, J. F. (2002). Mechanistic studies on thiophene species cracking over USY zeolite. catalysis Today, 77(1-2), 117-126.

Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. Journal of the Chemical Society, Chemical Communications, (16), 578-580.
Song, C., & Ma, X. (2003). New design approaches
to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Applied Catalysis B: Environmental, 41(1-2), 207-238.

Takahashi, A., Yang, F. H., & Yang, R. T. (2002). New sorbents for desulfurization by π-complexation: thiophene/benzene adsorption. Industrial & Engineering Chemistry Research, 41(10), 2487-2496.

Uytterhoeven, J. B., Christner, L. G., & Hall, W. K. (1965). Studies of the hydrogen held by solids. VIII. The decationated zeolites. The Journal of Physical Chemistry, 69(6), 2117-2126.

Uytterhoeven, J. B., Jacobs, P., Makay, K., & Schoonheydt, R. (1968). The thermal stability of hydroxyl groups in decationated zeolites X and Y. The Journal of Physical Chemistry, 72(5), 1768-1775.

Valencia, D., Whiting, G. T., Bulo, R. E., & Weckhuysen, B. M. (2016). Protonated thiophene-based oligomers as formed within zeolites: understanding their electron delocalization and aromaticity. Physical Chemistry Chemical Physics, 18(3), 2080-2086.

Whiting, G. T., Meirer, F., Valencia, D., Mertens, M. M., Bons, A. J., Weiss, B. M., Stevens, P. A., Smit, E., & Weckhuysen, B. M. (2014). Selective staining of Brønsted acidity in zeolite ZSM-5-based catalyst extrudates using thiophene as a probe. Physical Chemistry Chemical Physics, 16(39), 21531-21542.

Yang, R. T., Takahashi, A., & Yang, F. H. (2001). New sorbents for desulfurization of liquid fuels by π-complexation. Industrial & Engineering Chemistry Research, 40(26), 6236-6239.
Published
2019-08-07
How to Cite
Rivera, V., Suarez-Méndez, A., Pascual-Mathey, L., Gutierrez, A., Vera, M., & Fuentes, G. (2019). ON THE INTERACTION OF THIOPHENE AND ZEOLITE-Y IN THE THIOPHENE-BASED OLIGOMERS FORMATION. Revista Mexicana De Ingeniería Química, 19(1), 471-479. https://doi.org/10.24275/rmiq/Mat617