GLYCIDYL METHACRYLATE-COMPATIBILIZED POLY(LACTIC ACID)/NANOCLAY/AGAVE FIBER HYBRID BIOCOMPOSITES: EFFECT ON THE PHYSICAL AND MECHANICAL PROPERTIES

  • A. S. Martín del Campo
  • J. R. Robledo-Ortiz
  • M. Arellano
  • C. F. Jasso-Gastinel
  • J. M. Silva-Jara
  • E. J. López-Naranjo
  • A. A. Pérez-Fonseca
Keywords: PLA, Agave fiber, Nanoclays, Biocomposites, Mechanical properties

Abstract

This study evaluates the effect of agave fiber and nanoclay reinforcers over poly(lactic acid) (PLA) properties. Also, a compatibilizer based on glycidyl methacrylate and PLA was used to enhance the fiber-PLA interaction. The results showed that crystallinity of PLA was increased with nanoclay addition while fiber inclusion decreased it. Tensile and flexural moduli were increased by both reinforcements. The agave fibers affect negatively the tensile and flexural strengths, but they were importantly recovered by the used of the compatibilizer. Even though the nanoclay did not modify the impact strength, it was increased with agave fiber addition. The water absorption results showed that the coupling agent decreases the rate and maximum water absorption of the biocomposites. In general, it was concluded that with a proper combination of both reinforcers (hybridization) and the compatibilizer, it is possible to control the final characteristics of the biocomposite according to the desired or potential applications.

References

Alexandre, M. and Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering 28, 1-63. https:// doi.org/10.1016/S0927-796X(00)00012-7

Anaya-Reza O. and López-Arena T. (2018). Diseño de una biorrefinería sostenible para la producción de ácido láctico a partir de melaza de caña de azúcar. Revista Mexicana de IngenieríaQuímica 17(1), 243-259. doi:10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Anaya

Araújo, A., Botelho, G., Oliveira, M. and Machado, A.V. (2014). Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Applied Clay Science 88-89, 144-150. https://doi.org/10.1016/j.clay.2013.12.005

Araújo, J.R., Waldman, W.R. and De Paoli, M.A. (2008). Thermal properties of high density polyethylene composites with natural fibers: coupling agent effect. Polymer Degradation and Stability 93, 1770-1775. https://doi.org/10.1016/j.polymdegradstab. 2008.07.021

Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., López-Manchado, M.A. and Kenny, M. (2013). Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science 38, 1720-1747. https://doi.org/10.1016/ j.progpolymsci.2013.05.010

Arroyo, O.H., Huneault, M.A., Favis, B.D. and Bureau, M.N. (2010). Processing and properties of PLA/thermoplastic starch/montmorillonite nanocomposites. Polymer Composites 31, 114-127. https://doi.org/10.1002/pc.20774

Awal, A., Rana, M. and Sain, M. (2015). Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mechanics of Materials 80, 87-95. http://dx.doi.org/10.1016/j.mechmat.2014.09.009

Bolio-López, S.G., Veleva, L., Valadez-González, A. and Quintana-Owen, P. (2013). Weathering and biodegradation of polylactic acid composite reinforced with cellulosewhiskers. Revista Mexicana de Ingeniería Química 12(1), 143-153.

Bordes, P., Pollet, E. and Avérous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science 34, 125-155. https://doi.org/10.1016/ j.progpolymsci.2008.10.002

Burton, E.L., Woodhead, M., Coates, P. and Gough, T. (2010). Reactive grafting of glycidyl methacrylate onto polypropylene Journal of Applied Polymer Science 117, 2707-2714. https:// doi.org/10.1002/app.31085

Chavooshi, A., Madhoushi, M., Navi, M. and Abareshi, M.Y. (2014). MDF dust/PP composites reinforced with nanoclay: morphology, long-term physical properties and withdrawal strength of fasteners in dry and saturated conditions. Construction and Building Materials 52, 324-330. https://doi.org/10.1016/j.conbuildmat.2013.11.045

Chen, J. and Yan, N. (2013). Mechanical properties and dimensional stability of organo-nanoclay modified biofiber polymer composites. Composites Part B 47, 248-254. https:// doi.org/10.1016/j.compositesb.2012.11.015

Chiou, B., Wood, D., Yee, E., Imam, S., Glen, G. and Orts, W. (2007). Extruded starch-nanoclay nanocomposites: effects of glycerol and nanoclay concentration. Polymer Engineering and Science 47, 1898-1904. https://doi.org/10.1002/pen.20903

Essabir, H., Boujmal, R., Bensalah, M.O., Rodrigue, D., Bouhfid, R. and Qaiss, A. (2016). Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mechanics of Materials 98, 36-43. https://doi.org/10.1016/j.mech mat.2016.04.008

Farah, S., Anderson, D. and Langer, R. (2016). Physical and mechanical properties of PLA and their functions in widespread applications – A comprehensive review. Advanced Drug Delivery Reviews 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012

Gardette, M., Thérias, S., Gardette, J., Murariu, M. and Dubois, P. (2011). Photooxidation of polylactide/ calcium sulphate composites. Polymer Degradation and Stability 96, 616-623. http://doi.org/10.1016/j.polymdegradstab.2010.12.023

Gutierrez M.C., Pérez-Ortega F. and Felisberti M.I. (2018). Efectos de la presencia de fibras de celulosa y curauá en las propiedades térmicas y mecánicas de eco-compósitos de acetato de celulosa. Revista Mexicana de Ingeniería Química 17(2), 533-546. doi: 10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/GutierrezM

Jandas, P.J., Mohanty, S. and Nayak, S.K. (2013). Rheological and mechanical characterization of renewable resource based high molecular weight PLA nanocomposites. Journal of Polymers 2013, 1-11. http://dx.doi.org/ 10.1155/2013/403467

Jandas, P.J., Mohanty, S., Nayak, S.K. and Srivastava, H. (2011). Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites. Polymer Composites 32, 1689-1700. https:// doi.org/10.1002/pc.21165

Jiang, A., Xu, X. and Wu, H. (2016). Preparation and properties of l-lactide grafted sisal fiber-reinforced poly(lactic acid) composites. Polymer Composites 37, 802-809. https:// doi.org/10.1002/pc.23237

Khan, B.A., Na, H., Chevali, V., Warner, P., Zhu, P. and Wang, H. (2018). Glycidyl methacrylate-compatibilized poly(lactic acid)/hemp hurd biocomposites: processing, crystallization, and thermos-mechanical response. Journal of Materials Science & Technology 34, 387-397. https://doi.org/ 10.1016/j.jmst.2017.03.004

Kim, K.W., Lee, B.H., Kim, H.J., Sriroth, K. and Dorgan, J.R. (2012). Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. Journal of Thermal Analysis and Calorimetry 108, 1131-1139. https://doi.org/ 10.1007/s10973-011-1350-y

Kovacevic, Z., Bischof, S. and Fan, M. (2015). The influence of Spartium junceum L. fibres modified with montmorrilonite nanoclay on the thermal properties of PLA biocomposites. Composites Part B 78, 122-130. https://doi.org/10.1016/ j.compositesb.2015.02. 034

Kuciel, S., Jakubowska, P. and Kuzniar, P. (2014). A study on the mechanical properties and the influence of water uptake and temperature on bio-composites based on polyethylene from renewable sources. Composites Part B 64, 72-77. https:// doi.org/10.1016/ j.compositesb.2014.03.026

Ligot, S., Benali, S., Ramy-Ratiarison, R., Murariu, M., Snyders, R. and Dubois, P. (2015). Mechanical, optical and barrier properties of PLA-layered silicates nanocomposites coated with organic plasma polymer thin films. Material Science and Engineering with Advanced Research 1(1), 20-30. http:// doi.org/10.24218/msear.2015.04


Ma, P., Tao Ye, L.J., Dong, W. and Chen, M. (2014). Melt free-radical grafting of maleic anhydride onto biodegradable poly(lactic acid) by using styrene as a comonomer. Polymers 6, 1528-1543. https://doi.org/10.3390/polym6051528

Mathew, A.P., Oksman, K. and Sain, M. (2006). The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. Journal of Applied Polymer Science 101, 300-310. https://doi.org/10.1002/app.23346

Meng, X., Shi, G., Chen, W., Wu, C., Xin, Z. and Han, T. (2015). Structure effect of phosphite on the chain extension in PLA. Polymer Degradation and Stability 120, 283-289. https://doi.org/ 10.1016/j.polymdegradstab.2015.07.019

Moreno J.R.S., Ferreira E.A. and Gotardo R.A.M. (2018). Evaluation of the mechanical and insulation properties of a polymeric composite with corn cob loads triturated. Revista Mexicana de Ingeniería Química 17(2), 753-767. https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Moreno

Mukherjee, T. and Kao, N. (2011). PLA based biopolymer reinforced with natural fibre: a review. Journal of Polymers and the Environment 19, 714-725. https://doi.org/ 10.1007/s10924-011-0320-6

Nguyen, T.C., Ruksakulpiwat, C. and Ruksakulpiwat, Y. (2016). The study on the grafting of glycidyl methacrylate onto Poly(lactic acid) in an internal mixer. Walailak Journal of Science & Technology 13(12), 1037-1046. http://wjst.wu.ac.th/index.php/ wjst/article/view/2385

Nguyen, H., Zatar, W. and Mutsuyoshi, H. (2017). Mechanical properties of hybrid polymer composite. In: Hybrid polymer composite materials: properties and characterization, (Thakur, V.K., Thakur, M.K. and Pappu, A. eds.), Pp. 83-113. Woodhead publishing, Cambridge, UK. https://doi.org/10.1016/B978-0-08-100787-7.00004-4

Ojijo, V. and Sinha Ray, S. (2013). Processing strategies in bionanocomposites. Progress in Polymer Science 38, 1543-1589. https://doi.org/10.1016/j.progpolymsci. 2013.05.011

Panthapulakkal, S., Sain, M. and Law, S. (2005). Effect of coupling agents on rice-husk-filled HDPE extruded profiles. Polymer International 54, 137-142. https:// doi.org/10.1002/pi.1657

Pérez-Fonseca, A.A., Robledo-Ortíz, J.R., Moscos-Sanchez F.J., Rodrigue, D. and González-Núñez, R. (2014). Injection Molded Self-Hybrid Composites Based on Polypropylene and Natural Fibers. Polymer Composites 35, 1796-1806. https://doi.org/10.1002/pc.22834

Pérez-Fonseca, A.A., Robledo-Ortíz, J.R., Ramirez-Arreola, D.E., Ortega-Gudiño, P., Rodrigue, D. and González-Nuñez, R. (2014). Effect of hybridization on the physical and mechanical properties of high density polyethylene-(pine/agave) composites. Materials and Design 64, 35-43. https://doi.org/10.1016/j.matdes.2014.07.025

Pérez-Fonseca, A.A., Arellano, M., Rodrigue, D., González-Núñez, R. and Robledo-Ortíz, J.R. (2016). Effect of coupling agent content and water absorption on the mechanical properties of coir-agave fibers reinforced polyethylene hybrid composites. Polymer Composites 37, 3015-3024. https://doi.org/10.1002/pc.23498

Picard, E., Espuche, E. and Fulchiron, R. (2011). Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Applied Clay Science 53, 58-65. https://doi. org/10.1016/j.clay.2011.04.023

Piekarska, K., Sowinski, P., Piorkowaska, E., Haque, Md. M. U. and Pracella, M. (2016). Structure and properties of hybrid PLA nanocomposites with inorganic nanogillers and cellulose fibers. Composites Part A 82, 34-41. https://doi.org/10.1016/ j.compositesa.2015. 11.019

Prakalathan, K., Mohanty, S. and Nayak, S.K. (2012). Polylactide/modified layered silicates nanocomposites: a critical analysis of morphological, mechanical and thermal properties. Journal of Reinforced Polymers & Composites 31(19), 1300-1310. https://doi.org/10.1177/0731684412457597

Pyda, M. Boop, R.C. and Wunderlich, B. (2004). Heat capacity of poly(lactic acid). Journal of Chemical Thermodynamics 36, 731–742. doi:10.1016/j.jct.2004.05.003

Qiang, T., Yu, D. (2012). Correlation between Fractal Dimension and Impact Strength for Wood Plastic Composites. Advanced Materials Research 411, 548-551. https://doi.org/10.4028/www.scientific.net/AMR.411.548

Rajesh, G. and Ratna Prasad, A.V. (2014). Tensile properties of successive alkali treated short jute fiber reinforced PLA composites. Procedia Materials Science 5, 2188-2196. https:// doi.org/10.1016/j.mspro.2014.07.425

Robledo-Ortíz, R.J., Martín del Campo, A.S., López-Naranjo, E.J., Arellano, M., Jasso-Gastinel, C.F., González-Núñez, R. and Pérez-Fonseca, A.A. (2019). Effect of low nanoclay content on the physico-mechanical properties of poly(lactic acid) nanocomposites. Polymers and Polymer Composites 27(2), 43-54. https://doi.org/ 10.1177/0967391118816393

Sajna, V.P., Mohanty, S. and Nayak, S.K. (2017). Influence of nanoclay and graf copolymer on the thermal and flammability properties of poly(lactic acid)/banana fiber biocomposites. Journal of Vinyl & Additive Technology 23, 81-91. https://doi.org/10.1002/vnl.21556

Sarasini, F., Tirillò, J., Sergi, C., Seghini, M.C., Cozzarini, L. and Graupner, N. (2018). Effect of basalt fibre hybridisation and sizing removal on mechanical and termal properties of hemp fibre reinforced HDPE composites. Composite Structures 188, 394-406. https://doi.org/ 10.1016/j.compstruct.2018.01.046

Sawpan, M., Pickering, K.L. and Fernyhough, A. (2011). Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Composites Part A 42, 310-319. https://doi.org/10.1016/j.compositesa.2010.12.004

Shibata, M., Ozawa, K., Teramoto, N., Yoaomiya, R. and Takeishi, H. (2003). Biocomposites made from short abaca fiber and biodegradable polyesters. Macromolecular Materials and Engineering 288(1), 35-43. https://doi.org/10.1002/ mame.200290031

Shibata, M., Someya, Y., Orihana, M. and Miyoshi, M. (2006). Thermal and mechanical properties of plasticized poly(l-lactide) nanocomposites with organo-modified montmorillonites. Journal of Applied Polymer Science 99, 2594-2602. https://doi.org/10.1002/app.22268

Shumigin, D., Tarasova, E., Krumme, A. and Meire, P. (2011). Rheological and mechanical properties of poly (lactic) acid/cellulose and LDPE/cellulose composites. Materials Science 17(1), 32-37. http://dx.doi.org/10.5755/j01.ms.17.1.245

Singh, N.P., Aggarwal, L. and Gupta, V.K. (2015). Tensile behavior of sisal/hemp reinforced high density polyethylene hybrid composite. Materials Today: Proceedings 2, 3140-3148. https:// doi.org/10.1016/j.matpr.2015.07.102

Sinha Ray, S. and Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science 28, 1539-1641. https://doi.org/10.1016/ j.progpolymsci.2003.08.002

Thanh, N.C., Ruksakulpiwat, C. and Ruksakulpiwat, Y. (2015). Effect of melt mixing time in internal mixer on mechanical properties and crystallization behavior of glycidyl methacrylate grafted poly (lactic acid). Journal of Materials Science and Chemical Engineering 3, 102-107. http:// dx.doi.org/10.4236/msce.2015.37013

Torres-Tello, E.V., Robledo-Ortíz, J.R., González-García, Y., Pérez-Fonseca, A.A., Jasso-Gastinel, C.F. and Mendizabal, E. (2017). Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Industrial Crops and Products 99. 117-125. https://doi.org/10.1016/j.indcrop.2017.01.035

Virk, A.S., Hall, W. and Summerscales, J. Failure strain as the key design criterion for fracture of natural fibre composites. Composites Science & Technology 70, 995-999. https:// doi.org/10.1016/j.compscitech.2010.02.018
Wang, X., Hu, B., Feng, Y., Liang, F., Mo, J., Xiong, J. and Qiu, Y. (2008). Low velocity impact properties of 3D wooden basalt/aramid hybrid composites. Composites Sciences and Technology 68, 444-450. https://doi.org/10.1016/j.compscitech. 2007.06.016

Wang, Y., Weng, Y. and Wang, L. (2014). Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polymer Testing 36, 119-125. https://doi.org/10.1016/j.polymertesting.2014.04.001

Way, C., Wu, D.Y., Cram, D., Dean, K. and Palombo, E. (2013). Processing stability and biodegradation of polylactic acid (PLA) composites reinforced with cotton linters or maple hardwood fibres. Journal of Polymers and Environment 21, 54-70. https://doi.org/10.1007/s10924-012-0462-1

Wootthikanokkhan, J., Cheachun, N., Sombatsompop, N., Thumsorn, S., Kaabbuathong, N., Wongta, N., Wong-on, J., Isarankura Na Ayutthaya, S. and Kositchaiyong, A. (2013). Crystallization and thermomechanical properties of PLA composites: effects of additive types and head treatment. Journal of Applied Polymer Science 129, 215-223. https://doi.org/10.1002/app.38715

Xu, T., Tang, Z. and Zhu, J. (2012). Synthesis of polylactide-graft-glycidyl methacrylate graft copolymer and its application as a coupling agent in polylactide/bamboo flour biocomposites. Journal of Applied Polymer Science 125, 622-627. https:// doi.org/10.1002/app.36808

Yu, T., Jiang, N. and Li, Y. (2014). Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Composites Part A 64, 139-146. https://doi.org/ 10.1016/j.compositesa.2014.05.008

Yusoff, R.B., Takagi, H. and Nakagaito, A.N. (2016). Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products 94, 562-573. https://doi.org/10.1016/ j.indcrop.2016.09.017

Zhang, H. (2014). Effect of a novel coupling agent, alkyl ketene dimer, on the mechanical properties of wood-plastic composites. Materials and Design 59, 130-134. https:// doi.org/10.1016/j.matdes.2014.02.048

Zhang, N., Wang, Q., Ren, J. and Wang, L. (2009). Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. Journal of Materials Science 44, 250-256. https://doi.org/ 10.1007/s10853-008-3049-4
Published
2019-08-02
How to Cite
Martín del Campo, A., Robledo-Ortiz, J., Arellano, M., Jasso-Gastinel, C., Silva-Jara, J., López-Naranjo, E., & Pérez-Fonseca, A. (2019). GLYCIDYL METHACRYLATE-COMPATIBILIZED POLY(LACTIC ACID)/NANOCLAY/AGAVE FIBER HYBRID BIOCOMPOSITES: EFFECT ON THE PHYSICAL AND MECHANICAL PROPERTIES. Revista Mexicana De Ingeniería Química, 19(1), 455-469. https://doi.org/10.24275/rmiq/Mat627