EFFECT OF HIGH VOLTAGE ELECTRIC FIELD ON FOOD GRADE PAPAIN

  • M.L. Meza-Jiménez Instituto Politécnico Nacional
  • M.R. Robles-López Centro de Investigación en Biotecnología Aplicada
  • F. Reyes-Espinosa Universidad Autónoma Metropolitana-Iztapalapa
  • H. Hernández-Sánchez Universidad Autónoma Metropolitana-Iztapalapa
  • R.R. Robles-de la Torre Centro de Investigaci´on en Biotecnolog´ıa Aplicada
Keywords: papain, residual activity, high voltage electric field, frequency, time

Abstract

In this study, the enzyme papain was treated under different conditions of High Voltage Electric Field (HVEF), where three main factors were varied: frequency (0, 180 and 360 Hz), electric field strength (1, 5, and 9 kV / cm), and processing time (10, 20 and 30 minutes). The objective was to determine the changes in the activity of the enzyme and in its structure. The results mainly showed an eect of reduction on the residual activity (RA) of the enzyme papain. The best effect on the RA (47.9%) was achieved under the most intense treatment conditions of EF (9 kV/cm) and time (30 min). The results in the structure analysis of papain by fluorescence spectroscopy showed that HVEF led to denaturation and possibly aggregation of the enzyme. Therefore, HVEF can be considered as an effcient alternative nonthermal technology that can be used for partial enzyme inactivation

References

Amri, E. and Mamboya, F. (2012). Papain, a plant enzyme of biological importance: a review. American Journal of Biochemistry and Biotechnology 8, 99-104.

Ariza-Ortega, J.A., Robles-L´opez, M.R., and Robles de la Torre, R.R. (2013). Eect of electric field treatment on avocado oil. International Journal of Research in Agriculture and Food Sciences 1, 13-22.

Atungulu, G., Nishiyama, Y., and Koide, S. (2004). Respiration and climacteric patterns of apples treated with continuous and intermittent direct current electric field. Journal of Food Engineering 63, 1-8.

Bajgai, T., Hashinaga, F., Isobe, S., Vijaya Raghavan, G. S., and Ngadi, M. (2006). Application of High Electric Field (HEF) on the shelf life extension of emblic fruit (Phyllanthus emblica L.). Journal of Food Engineering 74, 308-313.

Carballo-S´anchez, M.P., Ram´ırez-Ram´ırez, J.C., Gimeno, M., Hall, G.M., R´ıos-Dur´an, M.G., and Shirai, K. (2016). Papaya (Carica papaya) and tuna (Thunnus albacares) by-products fermentation as biomanufacturing approach towards antioxidant protein hydrolysates. Revista Mexicana de Ingenier´ıa Qu´ımica 15, 91-100.

Castorena-Garc´ıa, H., Mart´ınez-Montes, F., Robles- L´opez, M., Welti-Chanes, J., Hern´andez-S´anchez, H., and Robles-de-la-Torre, R. (2013a). Eect of electric fields on the activity of polyphenol oxidases. Revista Mexicana de Ingenier´ıa Qu´ımica 12, 391-400.

Castorena-Garc´ıa, J. H., Cano-Hern´andez, M., Fajardo-Herrera, E., and Robles-de la Torre, R. (2013b). Inactivaci´on de poligalacturonasa de tomate con campo el´ectrico. Ingenier´ıa Agr´ıcola y Biosistemas 5, 17-21.

Chandrapala, J., Zisu, B., Palmer , M., Kentish, S., and Ashokkumar, M. (2011). Effects of ultrasound on the thermal and structure characteristics of proteins in reconstituted whey protein concentrate. Ultrasonics Sonochemistry 18, 951-957.

Cao,W., Nishiyama, Y., Koide, S., and Lu, Z. (2004). Drying enhancement of rough rice by an electric field. Biosystems Engineering 87, 445-451.

Esehaghbeygi, A., and Basiry, M. (2011). Electrohydrodynamic (EHD) drying of tomato slices (Lycopersicon esculentum). Journal of Food Engineering 14, 628-631.

Edwin, F., and Jagannadham, M. (1998). Sequential unfolding of papain in molten globule state. Biochemical and Biophysical Research Communications 252, 654-660.

Hsieh, C. W., and Ko, W. C. (2008). Eect of high voltage electrostatic field on quality of carrot juice during refrigeration. Food Science and Technology 41, 1752-1757.

Jiang, L.,Wang, J., Li, Y.,Wang, Z., Liang, J.,Wang, R., Chen, Y., Ma, W., Qi, B., and Zhang, M. (2014). Eects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International 62, 595-601.

Katsaros, G., Katapodis, P., and Taoukis, P. (2009). High hydrostatic pressure inactivation kinetics of the plant proteases ficin and papain. Journal of Food Engineering 91, 42-48.

Kumar, P. R., Sathish, H. A., and Prakash, V. (2009). The dierential stability of the left and right domains of papain. Process Biochemistry 44, 710-716.

Kunitz, M. (1947). Crystalline soybean trypsin inhibitor. II. General properties. Journal of General Physiology 30, 291-310.

Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy. 3rd ed. Springer, New York. Leong, S. Y., Ritchter, L.-K., Knorr, D., and Oey, I. (2014). Feasibility of using pulsed electric field processing to inactivate enzymes and reduce the cutting force of carrot (Daucus carota var. Nantes). Innovative Food Science and Emerging Technologies 26, 159-167.

Llerena-Suster, C., Jos´e, C., Collins, S., Briand, L., and Morcelle, S. (2012). Investigation of the structure and proteolytic activity of papain in aqueous miscible organic media. Process Biochemistry 47, 47-56.

Ohsima, T., Tamura, T., and Sato, M. (2007). Influence of pulsed electric field on various enzyme activities. Journal of Electrostatics 65, 156-161.

Palanimuthu , V., Rajkumar, P., Orsat, V., Gari´epy, Y., and Raghavan, G. (2009). Improving cranberry shelf-life using high voltage electric field treatment. Journal of Food Engineering 90, 365-371.

Rawlings, N. and Salvesen, G. (2013). Handbook of Proteolytic Enzymes. Vol.1. 3rd Ed. Academic Press, New York. Tetsuro, Y. (1993). Monitoring protein conformational changes during membrane fusion. Methods in Enzymology 221, 72-82.

Wang, Z., Li, Y., Jiang, L., Qi, B., and Zhou, L. (2014). Relationship between secondary st ucture and surface hydrophobicity of soybean protein isolate subjected to heat treatment. Journal of Chemistry Article ID 475389, 1-10. Yeom, H.W., Zhang, H. Q., and Dunne, P. C. (1999). Inactivation of papain by pulsed electric fields in a continuous system. Food Chemistry 67, 53-59.

Zaho R, Hao, J., Xue, J., Liu, H., and Li, L. (2011). Eect of high-voltage electrostatic field pretreatment on the antioxidant system in stored green mature tomatoes. Journal of the Science of Food and Agriculture 91, 1680-1886.

Zeng, X. A., Yu, S. J., Zhang, L., and Chen, X. D. (2008). The eects of AC electric field on wine maturation. Innovative Food Science and Emerging Technologies 9, 463-468.

Zhao, W. and Yang, R. (2009). Effect of highintensity pulsed electric fields on the activity, conformation and self-aggregation of pepsin. Food Chemistry 114, 777-781.

Zhao, W., Yang, R., and Zhang, H. Q. (2012). Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends in Food Science & Technology 27, 83-96.

Zhi-Long, Y., Wei-Cai, Z., Wen-Hua, Z., Xue-Pin, L., and Shi, B. (2014). Eect of ultrasound on the activity and conformation of alpha amylase, papain and pepsin. Ultrasonics Sonochemistry 21, 930-936. 108
Published
2019-07-23
How to Cite
Meza-Jiménez, M., Robles-López, M., Reyes-Espinosa, F., Hernández-Sánchez, H., & Robles-de la Torre, R. (2019). EFFECT OF HIGH VOLTAGE ELECTRIC FIELD ON FOOD GRADE PAPAIN. Revista Mexicana De Ingeniería Química, 16(1), 101-108. https://doi.org/10.24275/rmiq/Alim742
Section
Food Engineering