VIABILITY KINETICS OF FREE AND IMMOBILIZED Bifidobacterium bifidum IN PRESENCE OF FOOD SAMPLES UNDER GASTROINTESTINAL in vitro CONDITIONS

  • A.G. Mendoza-Madrigal Universidad Autónoma del Estado de Morelos
  • E. Durán-Páramo Instituto Politécnico Nacional
  • G. Valencia del Toro Instituto Politécnico Nacional
  • J.J. Chanona-Pérez Instituto Politécnico Nacional
  • O.CELESTE Martínez-Ramírez Universidad Autónoma del Estado de Morelos
  • I. Arzate-Vázquez Instituto Politécnico Nacional
Keywords: Bifidobacterium bifidum, gastrointestinal tract simulation, cell immobilization, food samples

Abstract

The objective of this work was to study the viability kinetics by a mathematical model of exponential decay of B. bifidum un-immobilized (free) and immobilized with sodium alginate under simulated gastrointestinal conditions in presence of food samples. The results demonstrated the protective effect of immobilization support in all experiments, compared to the free bacteria (p<0.05). The greater viability was observed in immobilized bacterial cells in the presence of breakfast model (14.7%), on the other hand greater viability loss of B. bifidum caused by beer and chili (0% after 30 min simulation) was observed. This study provides useful information on the kinetics of viability loss of immobilized bacterial cells through the upper gastrointestinal tract simulation and the effect of food samples on the viability of probiotic bacteria was demonstrated.

References

Acero-Ortega, C., Dorantes-Alvarez, L., Hern´andez- S´anchez, H., Guti´errez-L´opez, G., Aparicio, G., & Jaramillo-Flores, M. E. (2005). Evaluation of Phenylpropanoids in Ten Capsicum annuum L. Varieties and Their Inhibitory Eects on Listeria monocytogenes Murray,Webb and Swann Scott A. Food Science and Technology International 11, 5-10.

Ainsley Reid, A., Vuillemard, J. C., Britten, M., Arcand, Y., Farnworth, E., & Champagne, C. P. (2005). Microentrapment of probiotic bacteria in a Ca2+-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. Journal of Microencapsulation 22, 603-619.

Annan, N. T., Borza, A. D., & Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research International 41, 184-193.

Aoudia, N., Rieu, A., Briandet, R., Deschamps, J., Chluba, J., Jego, G., Guzzo, J. (2016). Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Eect on stress responses, antagonistic eects on pathogen growth and immunomodulatory properties. Food Microbiology 53, Part A, 51-59.

Begley, M., Gahan, C. G. M., & Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiology Reviews 29, 625-651.

Careaga, M., Fern´andez, E., Dorantes, L., Mota, L., Jaramillo, M. E., & Hernandez-Sanchez, H. (2003). Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. International Journal of Food Microbiology 83, 331-335.

Corradini, M. G., & Peleg, M. (2004). A model of non-isothermal degradation of nutrients, pigments and enzymes. Journal of the Science of Food and Agriculture 84, 217-226.

Corradini, M. G., & Peleg, M. (2006). Prediction of vitamins loss during non-isothermal heat processes and storage with non-linear kinetic models. Trends in Food Science & Technology 17, 24-34.

Champagne, C. P., & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology 18, 184-190.

Ding, W. K., & Shah, N. P. (2009). Eect of various encapsulating materials on the stability of probiotic bacteria. Journal of Food Science 74, M100-M107.

Doherty, S. B., Gee, V. L., Ross, R. P., Stanton, C., Fitzgerald, G. F., & Brodkorb, A. (2010). Ecacy of whey protein gel networks as potential viability-enhancing scaolds for cell immobilization of Lactobacillus rhamnosus GG. Journal of Microbiological Methods 80, 231-241.

FAO/WHO. 2001. Food and Agriculture Organization of the United Nations-World Health Organization. Health and nutritional properties of alginate in food. Heidebach, T., F¨orst, P., & Kulozik, U. (2010). Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. Journal of Food Engineering 98, 309-316.

Ledezma-Delgadillo, A., Carrillo-Gonz´alez, R., San Mart´ın-Mart´ınez, E., Jaime-Fonseca, M. R., Chac´on-L´opez, M. A. (2016). Nanoc´apsulas de urea en quitosano y ´acido polimetacr´ılico y su aplicaci´on en cultivo hidrop´onico de lechuga (Lactuca sativa L). Revista Mexicana de Ingenier´ıa Qu´ımica 15, 423-431.

Mainville, I., Arcand, Y., & Farnworth, E. R. (2005). A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. International Journal of Food Microbiology 99, 287-296.

Meile, L., Le Blay, G., & Thierry, A. (2008). Safety assessment of dairy microorganisms: Propionibacterium and Bifidobacterium. International Journal of Food Microbiology 126, 316-320.

Mitropoulou, G., Nedovic, V., Goyal, A., Kourkoutas, Y. (2013). Immobilization technologies in probiotic food production. Journal of Nutrition and Metabolism 2013, 1- 15.

Ocampo, I. J. G. R., & Carter, E. J. V. (2011). Protecci´on de Lactobacillus rhamnosus en capsulas de alginato de centro l´ıquido. Revista Mexicana de Ingenier´ıa Qu´ımica 10, 1-9.

Ouwehand, A. C., Derrien, M., de Vos,W., Tiihonen, K., & Rautonen, N. (2005). Prebiotics and other microbial substrates for gut functionality. Current Opinion in Biotechnology 16, 212-217.

Pacheco, K. C., del Toro, G. V., Mart´ınez, F. R., & Dur´an-P´aramo, E. (2010). Viability of Lactobacillus delbrueckii under human gastrointestinal conditions simulated in vitro. American Journal of Agricultural and Biological Science 5, 37-42.

Papadimitriou, K., Zoumpopoulou, G., Folign´e, B., Alexandraki, V., Kazou, M., Pot, B., & Tsakalidou, E. (2015). Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Frontiers in Microbiology 6, 58.

P´erez-Alonso, C., Campos-Montiel, R. G., Morales-Luna, E., Reyes-Mungu´ıa, A., Aguirre-A´ lvarez, G., & Pimentel-Gonza´lez, D. J. (2015). Stabilization of phenolic compounds from Opuntia oligacantha F¨orst by microencapsulation with agave SAP (aguamiel). Revista Mexicana de Ingenier´ıa Qu´ımica, 14, 579-588.

Reimann, S., Grattepanche, F., Benz, R., Mozzetti, V., Rezzonico, E., Berger, B., & Lacroix, C. (2011). Improved tolerance to bile salts of aggregated Bifidobacterium longum produced during continuous culture with immobilized cells. Bioresource Technology 102, 4559-4567.

Reyes-M´endez, A. I., Figueroa-Hern´andez, C., Melgar-Lalanne, G., Hern´andez-S´anchez, H., D´avila-Ort´ız, G., Jim´enez-Mart´ınez, C. (2015). Production of calcium-and iron-binding peptides by probiotic strains of Bacillus subtilis, B. claussi and B. coagulans GBI-30. Revista Mexicana de Ingenier´ıa Qu´ımica 14, 1-9.

Romero-L´opez, M. R, Osorio-D´ıaz P., Flores-Morales, A., Robledo N, Mora-Escobedo, R. (2015). Chemical composition, antioxidant capacity and prebiotic eect of aguamiel (Agave atrovirens) during in vitro fermentation. Revista Mexicana de Ingenier´ıa Qu´ımica 14, 281-292.

Rozada-S´anchez, R., Sattur, A. P., Thomas, K., & Pandiella, S. S. (2008). Evaluation of Bifidobacterium spp. for the production of a potentially probiotic malt-based beverage. Process Biochemistry 43, 848-854.

Ruas-Madiedo, P., Hugenholtz, J., & Zoon, P. (2002). An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal 12, 163- 171.

Salazar-Leyva, J. A., Lizardi-Mendoza, J., Ram´ırez-Su´arez, J. C., Garc´ıa-S´anchez, G., Ezquerra-Brauer, J. M., Valenzuela-Soto, E. M., Carvallo-Ruiz, M. G., Lugo-S´anchez, M. E., Pacheco- Aguilar, R. (2014). Utilizaci´on de materiales a base de quitina y quitosano en la inmovilizaci´on de proteasas. Efectos en su estabilizaci´on y aplicaciones. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 129-150.

Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology 62, 47-55.

Taqieddin, E., & Amiji, M. (2004). Enzyme immobilization in novel alginate?chitosan coreshell microcapsules. Biomaterials 25, 1937-1945.

Vega, A., Fito, P., Andr´es, A., & Lemus, R. (2007). Mathematical modeling of hotair drying kinetics of red bell pepper (var. Lamuyo). Journal of Food Engineering 79, 1460-1466.
Published
2019-07-26
How to Cite
Mendoza-Madrigal, A., Durán-Páramo, E., Valencia del Toro, G., Chanona-Pérez, J., Martínez-Ramírez, O., & Arzate-Vázquez, I. (2019). VIABILITY KINETICS OF FREE AND IMMOBILIZED Bifidobacterium bifidum IN PRESENCE OF FOOD SAMPLES UNDER GASTROINTESTINAL in vitro CONDITIONS. Revista Mexicana De Ingeniería Química, 16(1), 159-168. https://doi.org/10.24275/rmiq/Alim763
Section
Food Engineering

Most read articles by the same author(s)