• C. Hernández-Jaimes Universidad Aut´onoma del Estado de M´exico
  • M. Meraz
  • V.H. Lara
  • G. González-Blanco
  • L. Buendía-González
Keywords: corn starch film, 1,3-propanediol, degradability, acid hydrolysis, morphology


Corn starch-based films with trimethyilene glycol (1,3-propanediol) as plasticizer were prepared with the casting technique and subject to acid hydrolysis (HCl 1.0 M) at 20 oC. The film degradation was monitored by changes in surface morphology, crystallinity, thermal properties and surface wettability. In the first two days, the hydrolysis showed low advance to subsequently exhibit a huge increase of the reaction rate. It suggested that surface erosion is the main mechanism involved in the film degradation. XRD showed the presence of poly-1,3-propanediol, attributed to condensation reaction of plasticizer in acidic conditions. Thermal analysis showed two endothermic peaks at 110-120 oC attributed to melting of crystallized amylopectin and to a lesser extent co-crystallized amylose and amylopectin. The temperature of these peaks was not aected by hydrolysis time, supporting the idea that hydrolysis reactions are constrained to the film surface. Contact angle measurements indicated a significant decrease of hydrophobicity caused by fractionation of starch chains.


Agama-Acevedo, E., Bello-Perez, E.A., Pacheco-Vargas, G., and Evangelista-Lozano, S. (2015). Inner structure of plantain starch granules by surface chemical gelatinization: morphological, physicochemical and molecular properties. Revista Mexicana de Ingenier´ıa Qu´ımica 14, 73-80.

Ahmad, M., Hani, N. M., Nirmal, N. P., Fazial, F. F., Mohtar, N. F., and Romli, S. R. (2015). Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Progress in Organic Coatings 84, 115-127.

Bastioli, C. (2001). Global status of the production of biobased packaging materials. Starch/St¨arke 53, 351-355.

Bootklad, M., and Kaewtatip, K. (2013). Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydrate Polymers 97, 315-320.

Carrillo-Navas, H., Avila-de la Rosa, G., G´omez-Lur´ıa, D., Meraz, M., Alvarez-Ramirez, J., and Vernon-Carter, E. J. (2014). Impact of ghosts on the viscoelastic response of gelatinized corn starch dispersions subjected to small strain deformations. Carbohydrate Polymers 110, 156-162.

Debet, M. R., and Gidley, M. J. (2007). Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule “ghost” integrity. Journal of Agricultural and Food Chemistry 55, 4752-4760.

Funke, U., Bergthaller, W., and Lindhauer, M. G. (1998). Processing and characterization of biodegradable products based on starch. Polymer Degradation and Stability 59, 293-296.

Gao, W., Dong, H., Hou, H., and Zhang, H. (2012). Effects of clays with various hydrophilicities on properties of starch-clay nanocomposites by film blowing. Carbohydrate Polymers 88, 321-328.

Jim´enez, A., Fabra, M. J., Talens, P., and Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology 5, 2058-2076.

Kauppinen, J. K., Moatt, D. J., Mantsch, H., and Cameron, D. G. (1981). Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Applied Spectroscopy 35, 271-276.

Li, J. H., Miao, J., Wu, J. L., Chen, S. F., and Zhang, Q. (2014). Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocolloids 37, 166-173.

Liu, W., and Budtova, T. (2012). Ionic liquid: a powerful solvent for homogeneous starchcellulose mixing and making films with tuned morphology. Polymer 53, 5779-5787.

Lobato-Calleros, C., Hern´andez-Jaimes, C., Ch´avez- Esquivel, G., Meraz, M., Sosa, E., Lara, V. H., ... and Vernon-Carter, E. J. (2015). Effect of lime concentration on gelatinized maize starch dispersions properties. Food Chemistry 172, 353-360.

Lu, Y. S., Tighzerta, L., Dole, P., and Erre, D. (2005). Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer 46, 9863-9870.

Mali, S., Grossmann, M. E., Garc´ıa, M. A., Martino, M. N., and Zaritzky, N. E. (2005). Mechanical and thermal properties of yam starch by films. Food Hydrocolloids 19, 157-164.

Mano, J. F., Koniarova, D., and Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science: Materials in Medicine 14, 127-135.

Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., and Sridhar, R. (2014). Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions. Carbohydrate Polymers 101, 20-28.

Parra, D. F., Tadini, C. C., Ponce, P., and Lug˜ao, A. B. (2004). Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers 58, 475-481.

Pelissari, F. M., Yamashita, F., Garcia, M. A., Martino, M. N., Zaritzky, N. E., and Grossmann, M. V. E. (2012). Constrained mixture design applied to the development of cassava starchchitosan blown films. Journal of Food Engineering 108, 262-267.

P´eroval, C., Debeaufort, F., Despr´e, D., and Voilley, A. (2002). Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. Journal of Agricultural and Food Chemistry 50, 3977-3983.

Ratnayake, W. S., and Jackson, D. S. (2007). A new insight into the gelatinization process of native starches. Carbohydrate Polymers 67, 511-529.

Rindlav-Westling, Å., Stading, M., and Gatenholm, P. (2002). Crystallinity and morphology in films of starch, amylose and amylopectin blends. Biomacromolecules 3, 84-91.

Shankar, S., Reddy, J. P., Rhim, J. W., and Kim, H. Y. (2015). Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers 117, 468-475.

Soares, R. M. D., Lima, A. M. F., Oliveira, R. V. B., Pires, A. T. N., and Soldi, V. (2005). Thermal degradation of biodegradable edible films based on xanthan and starches from dierent sources. Polymer Degradation and Stability 90, 449-454.

Thir´e, R. M., Ribeiro, T. A., and Andrade, C. T. (2006). Eect of starch addition on compression-molded poly (3- hydroxybutyrate)/starch blends. Journal of Applied Polymer Science 100, 4338-4347.

Utrilla-Coello, R. G., Hern´andez-Jaimes, C., Carrillo-Navas, H., Gonz´alez, F., Rodr´ıguez, E., Bello-P´erez, L. A., ... and Alvarez-Ramirez, J. (2014). Acid hydrolysis of native corn starch: morphology, crystallinity, rheological and thermal properties. Carbohydrate Polymers 103, 596-602.

Van Soest, J. J., Hulleman, S. H. D., De Wit, D., and Vliegenthart, J. F. G. (1996). Crystallinity in starch bioplastics. Industrial Crops and Products 5, 11-22.

Vargas-Torres, A., Zamudio-Flores, P.B., Salgado-Delgado, R., and Bello-P´erez, L.A. (2008). Biodegradation of low-density polyethylenebanana starch films. Journal of Applied Polymer Science 110, 3464-3472.

Vernon-Carter, E. J., Hern´andez-Jaimes, C., Meraz, M., Lara, V. H., Lobato-Calleros, C., and Alvarez-Ramirez, J. (2015). Physico-chemical characterization and in vitro digestibility of gelatinized corn starch dispersion fractions obtained by centrifugation. Starch/St¨arke 67, 701-708.

Yang, H. S., Yoon, J. S., and Kim, M. N. (2005). Dependence of biodegradability of plastics in compost on the shape of specimens. Polymer Degradation and Stability 87, 131-135.

Yuan, Y., and Lee, T. R. (2013). Contact angle and wetting properties. In: Surface Science Techniques. Springer Berlin Heidelberg. 3-34

Zamudio-Flores, P.B., Tirado-Gallegos, J.M., Monter-Miranda J.G., Aparicio-Saguilan, A., Torruco-Uco, J.G., Salgado-Delgado, R., and Bello-Perez, L.A. (2015). In vitro Digestibility and thermal, morphological and functional properties of fluors and oats starches of different varieties. Revista Mexicana de Ingenier´ıa Qu´ımica 14, 81-91.

Zheng, Y., Miao, J., Zhang, F., Cai, C., Koh, A., Simmons, T. J., ... and Linhardt, R. J. (2016). Surface modification of a polyethylene film for anticoagulant and antimicrobial catheter. Reactive and Functional Polymers 100, 142-150.
How to Cite
Hernández-Jaimes, C., Meraz, M., Lara, V., González-Blanco, G., & Buendía-González, L. (2019). ACID HYDROLYSIS OF COMPOSITES BASED ON CORN STARCH AND TRIMETHYLENE GLYCOL AS PLASTICIZER. Revista Mexicana De Ingeniería Química, 16(1), 169-178.
Food Engineering

Most read articles by the same author(s)

1 2 > >>