Prediction of storage conditions of dehydrated foods from a water vapor adsorption isotherm

  • L.A Pascual-Pineda Universidad Veracruzana
  • L. Alamilla-Beltrán Instituto Politécnico Nacional
  • G.F. Gutiérrez-López Instituto Politécnico Nacional
  • E. Azuara Universidad Veracruzana
  • E. Flores-Andrade Universidad Veracruzana
Keywords: stability criteria, adsorption isotherm, minimum integral entropy, conservation.

Abstract

The graphical relationship between the water activity (aW) and moisture (M), aW=M vs M, the interception of Rockland isotherm and the clustering function were proposed as three stability criteria to estimate the moisture content corresponding to the minimum of the integral entropy of the water adsorption of dehydrated foods. For this, three materials were analyzed: a sucrose-calcium powder (SA), vibro-fluidized drying pineapple powder (VFD) and capsules of paprika oleoresin in an alginate-zeolite matrix (NE) were analyzed. The three stability criteria showed that the maximum stability was similar to 4.9, 19.9 and 7.3 g water/100 dry solids for SA, VFD and NE, respectively. The results showed that the maximum in the graphical relationship of aW=M vs M, as well as the intercept of the local Rockland isotherms and the cluster function, indicated the equilibrium between the entropic and enthalpic mechanisms of water adsorption, which agrees with the minimum integral entropy and can be used as a criterion to select the best storage conditions.

References

Adolphs, J. (2007). Excess surface work-A modelless way of getting surface energies and specific surface areas directly from sorption isotherms. Applied Surface Science 253(13 SPEC. ISS.), 5645-5649.

Adolphs, J. y Setzer, M. (1998). Description of gas adsorption isotherms on porous and dispersed systems with the excess surface work model. Journal of Colloid and Interface Science 207, 349-354.

Aguerre, R. J., Viollaz, P. E. y Su´arez, C. (1996). A fractal isotherm for multilayer adsorption in foods. Journal of Food Engineering 30, 227- 238.

Al-Muhtaseb, A. H., McMinn, W. A. M. y Magee, T. R. A. (2002). Moisture sorption isotherm characteristics of food products: A review. Food and Bioproducts Processing 80, 118-128.

Alamilla-Beltrán, L., Chanona-Perez, J. J., Jiménez-Aparicio, A. R. y Gutierrez-Lopez, G. F. (2005). Description of morphological changes of particles along spray drying. Journal of Food Engineering 67, 179-184.

Azuara, E. y Beristain, C. I. (2006). Enthalpic and entropic mechanisms related to water sorption of yogurt. Drying Technology 24, 1501-1507.

Banjac, M., Stameni´c, M., Le˘ci´c, M. y Stakic, M. (2009). Size distribution of agglomerates of milk powder in wet granulation process in a vibro-fluidized bed. Brazilian Journal of Chemical Engineering 26, 515-525.

Basu, S., Shivhare, U. S. y Mujumdar, A. S. (2006). Models for sorption isotherms for foods: A review. Drying Technology 24, 917-930.

Beristain, C. I. Azuara, E., Cortes, R. y Garc´ıa, H. S. (1990). Mass transfer during osmotic dehydration of pineapple. International Journal of Food Science and Technology 25, 576-582.

Beristain, C., Azuara, E. y Vernon, E. (2002). Effect of water activity on the stability to oxidation of spray-dried encapsulated orange peel oil using mesquite gum (Prosopis Juliflora) as wall material. Journal of Food Science 67, 206-211.

Beristain, C. I., D´ıaz, R., Garcia, H. S. y Azuara, E. (1994). Thermodynamic behavior of green whole and decaeinated coee beans during adsorption. Drying Technology 12, 1221-1233.

Beristain C. I. y Azuara, E. (1990). Estabilidad máxima en productos deshidratados. Ciencia - Academia de La Investigaci´on Cient´ıfica 41, 229-236.

Blahovec, J. y Yanniotis, S. (2009). Modified classification of sorption isotherms. Journal of Food Engineering 91, 72-77.

Blahovec, J. y Yanniotis, S. (2010). “GAB” generalized equation as a basis for sorption spectral analysis. Czech Journal of Food Sciences 28, 345-354.

Bonilla, E., Azuara, E., Beristain, C. I. y Vernon- Carter, E. J. (2010). Predicting suitable storage conditions for spray-dried microcapsules formed with dierent biopolymer matrices. Food Hydrocolloids 24, 633-640.

Braibanti, A., Fisicaro, E. y Palmia, F. (1990). Water activity and pseudo-activity coecient of sorbed water. Journal of Food Engineering 12, 307-324.

Brunauer, S., Deming, L. S., Deming, W. E. y Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society 62, 1723-1732.

Condon, J. B. (2006). Surface Area and Porosity Determinations by Physisorption. Measurements and Theory. Amsterdam: Elsevier.

Dom´ınguez, I. L., Azuara, E., Vernon-Carter, E. J. y Beristain, C. I. (2007). Thermodynamic analysis of the eect of water activity on the stability of macadamia nut. Journal of Food Engineering 81, 566-571.

Furmaniak, S., Terzyk, A. P., Golembiewski, R., Gauden, P. A. y Czepirski, L. (2009). Searching the most optimal model of water sorption on foodstus in the whole range of relative humidity. Food Research International 42, 1203-1214.

Gabas, A. L., Telis, V. R. N., Sobral, P. J. A. y Telis-Romero, J. (2007). Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering 82, 246-252. Goméz, G. I. G., Orrego-Alzate, C. E., Grajales, L. M., Telis, V. R. N., Gabas, A. N. A. L. y Telis-Romero, J. (2011). Effect of drying methods on the thermodynamic properties of blackberry pulp powder. Dyna 78, 139-148.

Gregg, S. J. y Sing, K. S. W. (1982). Adsorption, Surface Area and Porosity (Segunda ed). London: Academic Press. Guadarrama-Lezama, A. Y., Cruz-Olivares, J., Mart´ınez-Vargas, Carrillo-Navas, H., Rom´an- Guerrero, A. y P´erez-Alonso, C. (2014). Determination of the minimum integral entropy, water sorption and glass transition temperature to establishing critical storage conditions of beetroot juice microcapsules by spray drying. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 405-416.

Henderson, S, M. (1952). A basic conception of equilibrium moisture. Agricultural Engineering 33, 29-32.

Hirano, T., Li, W., Abrams, L., Krusic, P. J., Ottaviani, M. F. y Turro, N. J. (2000). Supramolecular steric eects as the means of making reactive carbon radicals persistent. Quantitative characterization of the external surface of MFI zeolites through a persistent radical probe and a langmuir adsorption isotherm. Journal of Organic Chemistry 65, 1319-1330.

Iglesias, H. A. y Chirife, J. (1976). On the local isotherm concept and modes of moisture binding in food products. Journal of Agricultural and Food Chemistry 24, 77-79.

Iglesias, H. A. y Chirife, J. (1982). Handbook of Food Isotherms. Academic Press, New York. Jim´enez, M., Flores-Andrade, E., Pascual-Pineda, L. A. y Beristain, C. I. (2015). Effect of water activity on the stability of Lactobacillus paracasei capsules. LWT - Food Science and Technology 60, 346-351.

Kaymak-Ertekin, F. y Gedik, A. (2004). Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT -Food Science and Technology 37, 429-438.

Krishnan, S., Kshirsagar, A. C. y Singhal, R. S. (2005). The use of gum arabic and modified starch in the microencapsulation of a food flavoring agent. Carbohydrate Polymers 62, 309-315.

Krug, R. R., Hunter, W. G. y Grieger, R. A. (1976). Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis. Journal of Physical Chemistry 80, 2335-2341.

Rockland, L. B. (1969). Water activity and storage stability. Food Technology 23, 11-17.

Lahsasni, S., Kouhila, M., Mahrouz, M. y Kechaou, N. (2002). Experimental study and modelling of adsorption and desorption isotherms of prickly pear peel (Opuntia ficus indica). Journal of Food Engineering 55, 201-207.

Lang, K. W., McCune, T. D. y Steinberg, M. P. (1981). A proximity equilibration cell for rapid determination of sorption isotherms. Journal of Food Science 46, 936-938.

Leer, J. E. (1955). The enthalpy-entropy relationship and its implications for organic chemistry. Journal of Organic Chemistry 20, 1202-1231.

Lewicki, P. (1997). The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science & Technology 32, 553-557.

Lomauro, C. J., Bakshi, A. S. y Labuza, T. P. (1985). Evaluation of food moisture sorption isotherm equations. Part I: Fruit, vegetable and meat products. Lebensmittel-Wissenschaft und-Technologie 18, 111-117.

Lundberg, J. (1972). Molecular clustering and segregation in sorption systems. Pure and Applied Chemistry 31, 261-281.

McMinn, W. A. y Magee, T. R. (2003). Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering 60, 157-165.

Mosquera, L. H., Moraga, G. y Mart´ınez-Navarrete, N. (2010). Eect of maltodextrin on the stability of freeze-dried boroj. (Borojoa patinoi Cuatrec.) powder. Journal of Food Engineering 97, 72-78.

Nam, C. H., Pfeer, R., Dave, R. N. y Sundaresan, S. (2004). Aerated vibrofluidization of silica nanoparticles. AIChE Journal 50, 1776-1785. Nicoleti, J. F., Telis-Romero, J. y Telis, V. R. N. (2001). Air-drying of fresh and osmotically pretreated pineapple slices: Fixed air temperature versus fixed slice temperature drying kinetics. Drying Technology 19, 2175-2191. Othmer, D. F. (1940). Correlating vapor pressure and latent heat data. Industrial & Engineering Chemistry 32, 841-856.

Palin, M. J., Gittens, G. J. y Porter, G. B. (1975). Determination of diusion coecients of water in cellulose acetate membranes. Journal of Applied Polymer Science 19, 1135-1146.

Pascual-Pineda, L. A., Flores-Andrade, E., Alamilla-Beltr´an, L., Chanona-P´erez, J. J., Beristain, C. I., Guti´errez-L´opez, G. F. y Azuara, E. (2014). Micropores and their relationship with carotenoids stability: a new tool to study preservation of solid foods. Food and Bioprocess Technology 7, 1160-1170.

Pav´on-Garc´ıa, L. M. A., Gallardo-Rivera, R., Rom´an-Guerrero, A., Carrillo-Navas, H., Rodr´ıguez-Huezo, M. E., Guadarrama-Lezama, A. Y. y P´erez-Alonso, C. (2015). Moisture sorption properties and storage stability conditions of a nutraceutical system microencapsulated by spray drying. Revista Mexicana de Ingenier´ıa Qu´ımica 14, 601-613.

Pedro, M. A. M., Telis-Romero, J. y Telis, V. R. N. (2010). Eect of drying method on the adsorption isotherms and isosteric heat of passion fruit pulp powder. Ciˆencia E Tecnologia de Alimentos 30, 993-1000.

P´erez-Alonso, C., Beristain, C. I., Lobato-Calleros, C., Rodr´ıguez-Huezo, M. E. y Vernon-Carter, E. J. (2006). Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering 77, 753-760.

Rahman, M. S., Labuza, T. P. (1999). Water activity and food preservation. En M. S. Rahman (Ed.), Handbook of Food Preservation (pp. 339-382). New York: Marcel Dekker. Ram´ırez-Miranda, M., Cruz y Victoria, M. T., Vizcarra-Mendoza, M. y Anaya-sosa, I. 2014).

Determinaci´on de las isotermas de sorci´on y las propiedades termodin´amicas de harina de ma´ız Nixtamalizada. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 165-178.

Rasc´on, M. P., Beristain, C. I., Garc´ıa, H. S. y Salgado, M. A. (2011). Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and Soy protein isolate as wall materials. LWT - Food Science and Technology 44, 549-557.

Rodr´ıguez-Bernal, J. M., Flores-Andrade, E., Lizarazo-Morales, C., Bonilla, E., Pascual-Pineda, L. A., Gutierr´ez-L´opez, G. y Quintanilla-Carvajal, M. X. (2015). Moisture adsorption isotherms of the boroj´o fruit (Borojoa patinoi. Cuatrecasas) and gum arabicpowders. Food and Bioproducts Processing 94,187-198.

Sablani, S. S., Kasapis, S. y Rahman, M. S. (2007).Evaluating water activity and glass transitionconcepts for food stability. Journal of Food Engineering 78, 266-271.

Salcedo-Mendoza, J. G., Contreras-Lozano, K., Garc´ıa-L´opez, A. y Fern´andez-Quintero, A. (2016). Modelado de la cin´etica de secado del afrecho de yuca (Manihot esculenta Crantz). Revista Mexicana de Ingenier´ıa Qu´ımica 15, 883-891.

Stannett, V., Haider, M., Koros, W. J. y Hopfenberg, H. B. (1980). Sorption and transport of water vapor in glassy poly(acrylonitrile). Polymer Engineering and Science 20, 300-304.

Timmermann, E. O., Chirife, J. y Iglesias, H. A. (2001). Water sorption isotherms of foods and foodstus: BET or GAB parameters? Journal of Food Engineering 48, 19-31.

Vicente, J., Pinto, J., Menezes, J. y Gaspar, F. (2013). Fundamental analysis of particle formation in spray drying. Powder Technology 247, 1-7.

Vigan´o, J., Azuara, E., Telis, V. R. N., Beristain, C. I., Jim´enez, M. y Telis-Romero, J. (2012). Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods. Thermochimica Acta 528, 63-71.
Published
2019-09-04
How to Cite
Pascual-Pineda, L., Alamilla-Beltrán, L., Gutiérrez-López, G., Azuara, E., & Flores-Andrade, E. (2019). Prediction of storage conditions of dehydrated foods from a water vapor adsorption isotherm. Revista Mexicana De Ingeniería Química, 16(1), 207-222. https://doi.org/10.24275/rmiq/Alim817
Section
Food Engineering

Most read articles by the same author(s)