• F. Villalobos-Castillejos
  • L. Alamilla-Beltrán
  • D.E. Leyva-Daniel
  • A. Monroy-Villagrana
  • J. Jiménez-Guzmán
  • L. Dorantes-Álvarez
  • G.F. Gutiérrez-López Instituto Polit´ecnico Nacional
Keywords: emulsions, microfludization, long term stability, encapsulation, depletion flocculation


The long-term (60 days) effect of microfluidization on the properties of -carotene emulsions in a matrix of biopolymers (maltodextrin and gum arabic) for spray drying was evaluated. Microfluidization showed a significant effect (p ≤ 0.05) in the reduction of Emulsion Droplet Size (EDS) (262-721 nm). Emulsions with higher contents of gum arabic produce the smallest EDS (383-721 nm). EDS and the polydispersity index were directly related while stability and lightness were inversely related to EDS. The majority changes in the stability of emulsions were observed during the first 10 days, promoting the broke up for those emulsions with higher content of maltodextrin. Emulsions with large content of gum arabic remain stable for longer time, despite depletion flocculation due to excess biopolymer.


Avaltroni, F., Bouquerand, P. & Normand, V. (2004). Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydrate Polymers 58, 323-334.

Becher, P. (2001). Emulsions: Theory and practice, 3rd ed. Oxford University Press. U.K. Bouyer, E., Mekhloufi, G., Le Potier, I., de Kerdaniel, T.D.F., Grossiord, J.L., Rosilio, V., & Agnely, F. (2011). Stabilization mechanism of oil-in-water emulsions by -lactoglobulin and Arabic gum. International Journal of Colloid and Interface Science 354, 467-477.

Cano-Sarmiento, C., Monroy-Villagrana, A., Alamilla-Beltr´an, L., Hern´andez-S´anchez, H., Cornejo-Maz´on, M., T´ellez-Medina, D.I., Jim´enez-Mart´ınez, C., & Guti´errez-L´opez, G.F. (2014). Micromorphometric characteristics of α-tocopherol emulsions obtained by microfluidization. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 201-212.

Chaparro-Mercado, M.C., Garc´ıa-Ochoa, F., Hern´andez-S´anchez, H., Alamilla-Beltr´an, L., Quintanilla-Carvajal, M.X., Cornejo-Maz´on, M., Pedroza-Islas, R., & Guti´errez-L´opez, G.F. (2012). Design of an interstitial structure for a grape seed oil emulsion by design of experiments and surface response. Revista Mexicana de Ingenier´ıa Qu´ımica 11, 11-21.

Chung, C. & McClements, D.J. (2014). Structurefunction relationships in food emulsions:Improving food quality and sensory perception. Food Structure 1, 106-126.

Cubero, N., Monferrer, A. & Villalta, J. (2002). Aditivos alimentarios, 1st ed; Mundi Prensa. Espa˜na. Dalgleish, D.G., Tosh, S.M. & West, S. (1996).

Beyond homogenization: The formation of very small emulsion droplets during the processing of milk by a microfluidizer. Netherlands Milk and Dairy Journal 50, 135-148.

Desobry, S.A., Netto, F.M. & Labuza, T.P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for -carotene encapsulation and preservation. Journal of Food Science 62, 1158 - 1162.

Dom´ınguez-Hern´andez, C.R., Garc´ıa-Alvarado, M.A., Garc´ıa-Galindo, H.S., Salgado- Cervantes, M.A. & Berist´ain, C.I. (2015). Stability, antioxidant activity and bioavailability of nano-emulsified astaxanthin. Revista Mexicana de Ingenier´ıa Qu´ımica 15, 467-468.

Flores-Miranda, G.A., Valencia del Toro, G. & Ya˜nez-Fern´andez, J. (2015). Stability evaluation of -carotene nanoemulsions prepared by homogenization-emulsification process using stearic acid as oil phase. Revista Mexicana de Ingenier´ıa Qu´ımica 14, 667-680.

Gonz´alez-Rodr´ıguez, M.L., Barros, L.B., Palma, J., Gonz´alez-Rodr´ıguez, P.L. & Rabasco, A. M. (2007). Application of statically experimental design to study the formulation variables influencing the coating process of lidocaine liposomes. International Journal of Pharmaceutics 337, 336 - 345.

Jafari, S.M., He, Y. & Bhandari, B. (2007). Optimization of nano-emulsion production by microfluidization. European Food Research and Technology 225, 733-741.

Jafari, S.M., He, Y. & Bhandari, B. (2007b). Effectiveness of encapsulating biopolymer to produce sub-micron emulsion by high energy emulsification techniques. Food Research International 40, 862-873.

McNamee, B.F., O’Riordan, E.D. & O’Sullivan, M. (2001). Effect of partial replacement of gum arabic with carbohydrates on its microencapsulation properties. Journal of Agricultural and Food Chemistry 49, 3385-3388. Microfluidics (2008). Microfluidizer Processor User Guide. Microfluidics Corp. USA.

Mirhosseini, H., Tan, C.P., Hamid, N.S.A. & Yusof, S. (2008). Effect of arabic gum, xanthan gum and orange oil content on ζ- potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids and Surfaces A 315, 47-56.

Monroy-Villagrana, A., Cano-Sarmiento, C., Alamilla-Beltr´an, L., Hern´andez-S´anchez, H. & Guti´errez-L´opez, G.F. (2014). Coupled taguchi- RSM optimization of the conditions to emulsify α -tocopherol in an arabic gum-maltodextrin matrix by microfluidization. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 679-688.

Ochoa, A.A., Hern´andez-Becerra, J.A., Cavazos-Gardu˜no, A., Vernon-Carter, E.J. & Garc´ıa, H.S. (2016). Preparation and characterization of curcumin nanoemulsions obtained by thin-film hydration emulsification and ultrasonication methods. Revista Mexicana de Ingenier´ıa Qu´ımica 15, 79-90.

Panteloglou, A.G., Bell, A.E. & Ma, F. (2010). Effect of high-hydrostatic pressure and pH on the rheological properties of gum arabic. Food Chemistry 122, 972-979.

Paquin, P. (1999). Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins and polysaccharides. International Dairy Journal 9, 329-335.

P´erez-Alonso, C., Baez-Gonz´alez, J.G., Beristain, C.I., Vernon-Carter, E.J. & Vizcarra Mendoza, M.G. (2003). Estimation of the activation energy of carbohydrate polymers blends as selection criteria for their use as wall material of spray-dried microcapsules. Carbohydrate Polymers 53, 197 - 203.

Pinnamaneni, S., Das, N.G. & Das, S.K. (2003). Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization. Pharmazie 58, 554-558.

Qian, C. & McClements D.J. (2011). Formation of nanoemulsions stabilized by modelfood-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids 25, 1000-1008.

Quintanilla-Carvajal, M.X., Hern´andez-S´anchez, H., Alamilla-Beltr´an, L., Zepeda-Vallejo, G., Jaramillo-Flores, M.E., Perea-Flores, M.J., Jim´enez-Aparicio, A. & Guti´errez-L´opez, G.F. (2014). Eects of microfluidisation process on the amounts and distribution of encapsulated and non-encapsulated α - tocopherol microcapsules obtained by spraydrying. Food Research International 63, 2-8.

Salvia-Trujillo, L., Rojas-Gra¨u, M.A., Soliva-Fortuny, R. & Mart´ın-Belloso, O. (2013). Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids 30, 401-407.

Schultz, S., Wagner, G., Urban, K. & Uric J. (2004). High-pressure homogenization as a process for emulsion formation. Chemical Engineering & Technology 27, 361-368.

Shahidi, F. & Han, X.Q. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition 33, 501-547.

Soottintantawat, A., Yoshii, H., Furuta, T., Ohkawara, M. & Linko, P. (2003). Microencapsulation by spray drying: Influence of emulsion size on the retention of volatile compounds. Journal of Food Science 68, 2256-2262.

Soottintantawat, A., Bigeard, F., Yoshii, H., Furuta, T., Ohkawara, M. & Linko, P. (2005). Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovative Food Science & Emerging Technologies 6, 107-114.

Tovar-Ben´ıtez, T., Jim´enez-Mart´ınez, C., Perea-Flores, M.J., T´ellez-Medina, D.I. & D´avila-Ort´ız, G. (2016). Microencapsulation of bayo vean (Phaseolus vulgaris) protein hydrolysate with inhibitory activity on angiotensin-I converting enzyme through freeze-drying. Revista Mexicana de Ingenier´ıa Qu´ımica 15, 797-807.

Tschrimer, N. (2011). Raman spectroscopy of -carotene and CdSe-based nanocrystals. Tesis de Doctorado. Universidad T´ecnica de Berl´ın, Alemania. Vandenabeele, P., Wehling, B., Moens, L., Edwards, H., De Reu, M. & Van Hooydonk. (2000). Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Analytica Chimica Acta 407, 261- 274.

Williams, P.A. & Phillips, G.O. (2009). Handbook of Hydrocolloids. 2nd ed. Woodhead Publishing: U.K.

Zuidam, N. J. & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. In: Encapsulation Technologies for Active Food Ingredients and Food Processing; (Zuidam, N.J. & Nedovic, V.A, eds.), Springer Science + Business Media: New York.
How to Cite
Villalobos-Castillejos, F., Alamilla-Beltrán, L., Leyva-Daniel, D., Monroy-Villagrana, A., Jiménez-Guzmán, J., Dorantes-Álvarez, L., & Gutiérrez-López, G. (2019). LONG TERM STABILITY OF MICROFLUIDIZED EMULSIONS USED IN MICROENCAPSULATION BY SPRAY DRYING. Revista Mexicana De Ingeniería Química, 16(1), 221-228. https://doi.org/10.24275/rmiq/Alim824
Food Engineering

Most read articles by the same author(s)

1 2 3 > >>