Detection of Salmonella enterica on silicon substrates biofunctionalized with anti-Salmonella IgG, analyzed by FTIR spectroscopy

  • F. J. Gómez-Montaño
  • A. Orduña-Díaz
  • M.C. G. Avelino-Flores
  • F. Avelino-Flores
  • F. Ramos-Collazo
  • C. Reyes-Betanzo
  • V. López-Gayou
Keywords: biosensor, silicon, FTIR, Salmonella, IgG


Foodborne diseases are considered a health problem, Salmonella is part of the main microorganisms that generate this type of diseases, so its detection requires a short period of time, biosensors can be a good option to meet this need. In this work, three substrates (crystalline and amorphous silicon, hydrogenated amorphous silicon carbide) were biofunctionalized applying self-assembled monolayers technique, presence of characteristic functional groups of the assembly was verified by Fourier transform infrared spectroscopy (FTIR). Anti-Salmonella IgG antibodies against whole bacteria were generated. Second derivative of each FTIR detection spectrum was obtained, having modifications in the zone between 1600-1700 cm-1 given by the secondary structure of proteins, being crystalline silicon and hydrogenated amorphous silicon carbide platforms, which presented the most notorious bands. Detection was performed on flat substrates with a specific area (25 mm2), a detection time of 60 min was stablished and a concentration of 500 CFU/mL was detected. With this, the three silicon and derivatives biofunctionalized may have future applications in food microbial quality monitoring.


Alexandre, D.L., Melo, A.M.A., Furtado, R.F., Borges,, M.F., Figueiredo, E.A.T., Biswas, A., Cheng, H.N. & Alves, C.R. (2018) A rapid and specific biosensor for Salmonella typhimurium detection in milk. Food and Bioprocess Technology. 11, 748-756.

Aslam, M., Chaki, N.K., Sharma, J. & Vijayamohanan, K. (2003). Device applications of self-assembled monolayers and monolayer-protected nanoclusters. Current Applied Physics. 3, 115-127.

Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta. 1767, 1073-1101.

Batalla, P., Mateo, C., Grazu, V., Fernandez-Lafuente, R. & Guisan, J.M. (2009). Immobilization of antibodies through the surface regions having the highest density in lysine groups on finally inert support surfaces. Process Biochemistry. 44, 365-368.

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 7(72), 248-254.

Budini, N., Schmidt, J.A., Arce, R. & Buitrago, R.H. (2007). Silicio amorgo hidrogenado como material para la obtención de láminas delgadas de silicio policristalino. ANALES AFA. 182 (19), 182-186.

Burlage, R.S. & Tillmann, J. (2017). Biosensors of bacterial cells. J. Micrbiol. Methods. 138, 2-11.
Cabrera, M.J. (2011). Serología de la reacción antígeno-anticuerpo. Fesitess. Andalucía, España.

Cervantes-Landín, A.Y., Martínez-Martínez, I., A. Reyes., P., Shabib, M., Espinoza-Gutiérrez, B. (2014). Estandarización de la técnica Dot-ELISA para la detección de anticuerpos anti-Trypanosoma cruzi y su comparación con ELISA y Western blot. Enferm Infecc Microbiol Clin. 32(6), 363-368.

Crivianu-Gaita, V. & Thompson, M. (2016). Aptamers, antibody scFv, and antibody Fab’ fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosensors and Bioelectronics. 85, 32-45.

Dahmen, C., Janotta, A., Dimova-Malinovska, D., Marx, S., Jeschke, B., Nies, B., Kessler, H. & Stutzmann, M. (2003). Surface functionalization of amorphous silicon and silicon suboxides for biological applications. Thin Solid Films. 427, 201-207.

Dong, A., Huang, P., Caughey, W.S. (1990). Protein secondary structure in water from second-derivative amide I infrared spectra. Biochemistry. 29, 3303-3308.

Ducker, R.E., Montague, M.T. & Leggett, G.J. (2008). A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carboniimide, and anhydride reagents. Biointerphases. 3(3), 59-65.

Fernández-Gavela, A., Grajales-García, D., Ramírez, J.C. & Lechuga, L.M. (2016). Last advances in silicon-based optical biosensors. Sensors.16(285), 1-15.

Food and Drugs Administration (2018). Most common foodborne illnesses. Available in: Access day: May 31, 2019.

Herrera-Celis, J., Reyes-Betanzo, C., Itzmoyotl-Toxqui, A., Orduña-Díaz A. & Pérez-Coyotl, A. (2015). A.SixC1-x:H thin films with subnanometer surface roughness for biological applications. J. Vac. Sci. Technol. A. 33(5), 1-7.

Joseph, J., Govind Singh, S., Krishna Vanjari, S.R. (2017). Ultra-smooth e-beam evaporated amorphous silicon thin films- A viable alternative for PECVD amorphous silicon thin films for MEMS applications. Material Letters. 197, 52-55.

Knaack, G.L., Charkhkar, S.F., Cogan, J.J., Pancrazio & Saddow, S.E. (2016). Silicon Carbide Biotechnology. 2nd Ed. Amsterdam, Elsevier. Ed. S.E. Saddow, 249.

Kong, J. & Yu S. (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica. 39(8), 549-559.

Lepinay, S., Staff, A., Ianoul, A. & Albert, J. (2014). Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles. Biosensors and Bioelectronics. 52, 337-344.

Liu, Y., Zhang, Q., Hu, M., Yu, K., Fu, J., Zhou, F., Liu, X. (2015). Proteomic analyses of intracellular Salmonella enterica serovar typhimurium reveal extensive bacterial adaptations to infected host epithelial cells. Infectimmun. 83, 2897-2906.

Liu, Z., Li, Z., Zhou, H., Wei, G., Song, Y. & Wang, L. (2005). Immobilization and condensation of DANN with 3-aminopropyltriethoxysilane studied by atomic force microscopy. J. Microsc. 218(3), 233-239.

Lutgens, F.K., Tarbuck, E.J. (2000). Essentials of geology. 7th Ed. Upper Saddle River, NJ: Prentice Hall.
Majoul, N., Aouida, S. & Bessaïs, B. (2015). Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 331, 388-391.

Mehrotra, P. (2016). Biosensors and their applications-a review. J. Oral. Biol. Craniofac Res. 6(2), 153-159.

Mondal, S. (2018). UNIT-II: Aromatic Amines: Basicity of amines, effect of substituents on basicity, and synthetic uses of aryl diazonium salts. Available in: Access day: June 1, 2019.

Natalello, A., Ami, D., Brocca, S., Lotti, M. & M. Doglia, S. (2005). Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by Fourier-transform infrared spectroscopy. Biochem. J. 385, 511-517.

Odeyemi, O.A. (2016). Public health implications of microbial food safety and foodborne diseases in developing countries. Food & Nutrition Research. 60, 1-2.

Parker, S.F. (2013). Assignment of the vibrational spectrum of L-cysteine. Chem. Phys. 424, 75-79.

Pasternack, R.M., Rivillion, S. & J. Chabal, Y. (2008). Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature. Langmuir. 24(22), 12963-12970.

Saddow, E. (2012). Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, 1st Ed. Elsevier Science. Ed. S.E. Saddow, 17-61.

Saini, A.K., Carlin, C.M. & Patterson, H.H. (1993). Confirmation of the presence of imine bonds in thermally cured polymides. Journal of polymer science: part A, polymer chemistry. 31, 2751-2758.

Seo, K.H., Brackett, R.E., Hartman, N.F. & Campbell, D.P. (1999). Development of a rapid response biosensor for detection of Salmonella typhimurium. Journal of Food Protection. 62(5). 431-437.

Smith, E.L., McFadden, M.L., Stockell, A. & Buettner-Janusch, V. (1955). Amino acid composition of four rabbit antibodies. J. Biol. Chem. 214, 197-207.

Surewicz, W.K. & Mantsch, H.H. (1988). New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 952(2), 115-130.

Taylor, A.P., Webb, R.I., Barry, J.C., Hosmer, H., Gould, R.J. & Wood B.J. (2000). J. Microsc. 199(1), 56-57.

Vargas, T. & Flores, T. (2014). Reacciones antígeno-anticuerpo. Revista de Actualización Clínica. 44. 2319-2324.

Vogel, F.R., Powell, M.F. (1995). A summary compendium of vaccine adjuvants and excipients. Vaccine design: the subunit and adjuvant approach. New York, USA. Plenum Publishing Corp. 234-250.

World Health Organization (2018). Salmonella (non-typhoidal). Available in: Access day: May 31, 2019.

Yamaura, M., Camilo, R.L., Macêdo, M.A. Nakamura, M. & Toma, H.E. (2004). Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J. Magn. Mater. 279(2-3), 210-217.

Yang, G.J., Huang, J.L., Meng, W.J., Shen, M. & Jiao, X.A. A reusable capacitive immunosensor for detection of Salmonella spp. Based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal. Chim. Acta. 647(2): 159-166.

Yoo, S.M. & Lee, S.Y. (2016). Optical biosensors for the detection of pathogenic microorganisms. Trends in biotechnology. 34(1), 7-25.

Zhang, Y., Xiao, B. & Xu, W. (2017). Functional nucleic acids biosensors for living or dead bacteria detection. J. Food Microbiol. 1(1), 7-13.

Zheng, G., Patolsky, F., Cui, F., Wang, W.U. & Lieber C.M. (2005). Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294-1301.
How to Cite
Gómez-Montaño, F. J., Orduña-Díaz, A., Avelino-Flores, M. G., Avelino-Flores, F., Ramos-Collazo, F., Reyes-Betanzo, C., & López-Gayou, V. (2020). Detection of Salmonella enterica on silicon substrates biofunctionalized with anti-Salmonella IgG, analyzed by FTIR spectroscopy. Revista Mexicana De Ingeniería Química, 19(3), 1175-1185.