CHARACTERIZATION OF PRODUCTION OF LACCASES, CELLULASES AND XYLANASES OF Pleurotus ostreaus GROWN ON SOLID-STATE FERMENTATION USING AN INERT SUPPORT

  • J. Álvarez Universidad Autónoma de Tlaxcala
  • C. Sánchez Universidad Autónoma de Tlaxcala
  • R. Díaz Universidad Autónoma de Tlaxcala
  • G. Díaz-Godínez Universidad Autónoma de Tlaxcala
Keywords: Pleurotus ostreatus, fermentation, laccases, cellulases, xylanases

Abstract

Activities of laccase, cellulase and xylanase produced by Pleurotus ostreatus grown in solid-state fermentation using polyurethane foam as inert support were evaluated, and the growth kinetic parameters of fungus were obtained. In general, all enzymatic activities were observed in the fermentation broth. Laccases showed the highest activity (18,030 U L−1 ) in the medium with glucose as unique carbon source. The cellulose activity was 216 U L−1 in the medium with three carbon sources (glucose, carboxymethylcellulose and xylan), while xylanase activity was observed around the 200 h of fermentation and the highest value was 240 U L−1 in presence of the three carbon sources. Two isoforms of cellulase and xylanase and four laccase isoforms were observed in the zymograms. Most studies on the production of fungal enzymes in solid-state fermentation systems have been made using agroindustrial residues which acting as a support but also as a substrate so the quantification of biomass produced is complicated due to its complex composition, on the other hand is impossible determine whether enzymes of interest are constitutive or inducible. In this study, physiological parameters of Pleurotus ostreatus developed in solid culture could be obtained by using an inert support, also it was determined that in this fungus, laccases are constitutive enzymes, although activity values were changed depending on the carbon sources used, on the other hand, cellulases were inducible and susceptible to catabolite repression, while xylanase enzymes were observed in the three culture media, however, the highest activity value was produced in the culture medium with the three carbon sources.

References

Ali, S., Sayed, A., Sarker, R. I. and Alam, R. (1991). Factors affecting cellulase production by Aspergillus terreus using water hyacinth. World Journal of Microbiology and Biotechnology 7, 62-66.

Álvarez-Cervantes, J., Hernández-Domínguez, E. M., Arana-Cuenca, A., Díaz-Godínez, G. and Mercado-Flores, Y. (2013). Purification and characterization of xylanase srxl1 from Sporisorium reilianum grown in submerged and solid-state fermentation. Bioresources 8, 5309- 5318.

Amore, A., Giacobbe, S. and Faraco, V. (2013). Regulation of cellulase and hemicellulase gene expression in fungi. Current Genomics 14, 230- 249.

Aro, N., Pakula, T. and Penttilä, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews 29, 719-739.

Beauchemin, K. A., Colombatto, D. and Morgavi, D. P. (2003). A rationale for the development of feed enzyme products for ruminants. Canadian Journal of Animal Science 84, 23-36.

Baldrian, P. (2006). Fungal laccases occurrence and properties. FEMS Microbiology Reviews 30, 215-242.

Castro, A., González, I., Tzompantzi, F. and Viniegra-González, G. (2013). Influence of the type of support and immobilization on the activity and stability of laccase enzyme (Trametes versicolor). Revista Mexicana de Ingeniería Química 12, 241-255.

Díaz-Godínez, G., Soriano-Santos, J., Augur, C. and Viniegra-González, G. (2001). Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study. Journal of Industrial Microbiology and Biotechnology 26, 271-275.

Díaz, R., Alonso, S., Sánchez, C., Tomasini, A., Bibbins-Martínez, M. D. and Díaz-Godínez, G. (2011a). Characterization of the growth and laccase activity of strains of Pleurotus ostreatus in submerged fermentation. Bioresources 6, 282-290.

Díaz, R., Sanchez, C., Bibbins-Martínez, M. D. and Díaz-Godínez, G. (2011b). Effect of medium pH on laccase zymogram patterns produced by Pleurotus ostreatus in submerged fermentation. African Journal of Microbiology Resources 5, 2720-2723.


Díaz, R., Téllez-Téllez, M., Sánchez, C., Bibbins-Martínez, M. D., Díaz-Godínez, G. and Soriano-Santos, J. (2013). Influence of initial pH of the growing medium on the activity, production and genes expression profiles of laccase of Pleurotus ostreatus in submerged fermentation. Electron Journal of Biotechnology 16, 4.

Haltrich, D., Nidetzky, B., Kulbe, K., Steiner, W. and Zupancic, S. (1996). Production of fungal xylanases. Bioresource Technology 58, 137- 161.

Hernández-Domínguez, E. M., Rios-Latorre, R. A., Álvarez-Cervantes, J., Loera-Corral, O., Roman-Gutíerrez, A. D., Díaz-Godínez, G. and Mercado-Flores, Y. (2014). Xylanases, cellulases and acid protease produced by Stenocarpella maydis grown in solid-state and submerged fermentation. Bioresources 9, 2341- 2358.

Howard, R. L., Abotsi, E., Jansen Van-Rensburg, E. L. and Howard, S. (2003). Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology 2, 602-619.

Hu, T., Zhou, Y., Dai, L., Wang, Y., Liu, D., Zhang, J. and Liu, H. (2011). Enhanced cellulase production by solid state fermentation with polyurethane foam as inert supports. Procedia Engineering 18, 335-340.

John, R. P., Nampoothiri, K. M. and Pandey, A. (2007). Polyurethane foam as an inert carrier for the production of L (+)-lactic acid by Lactobacillus casei under solid-state fermentation. Letters in Applied Microbiology 44, 582-587.

Karp, S. G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V. T., Pandey, A. and Soccol, C. R. (2012). Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresource Technology 114, 735-739.

Loewus, F. A. (1952). Improvement in anthrone method for determination of carbohydrates. Analytical Chemistry 24, 219.

Mansur, M., Arias, M. E., Copa-Patiño, J. L., Flärdh, M. and Gonzalez, A, E. (2003). The White-rot fungus Pleurotus ostreatus secretes laccase isoenzymes with different substrate specificities. Mycologia 95, 1013-1020.

Margolles-Clark, M., Ihnen, M. and Penttila, M. (1997) Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. Journal of Biotechnology 57, 167-179.

Massadeh, MI., Yusoff, W. M. W., Omar, O. and Kader, J. (2001). Synergism of cellulase enzymes in mixed culture solid substrate fermentation. Biotechnology Letters 23, 1771- 1774.

Miller, L. G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426-428.

Mikiashvili, N., Wasser, S. P., Nevo, E. and Elisashvili, V. (2006). Effects of carbon and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity. World Journal of Microbiology and Biotechnology 22, 999-1002.

Papinutti, V. L., Dorio, L. A. and Forchiassin, F. (2003). Degradació de madera de álamo por Fomes sclerodermeus: producción de enzimas ligninolíticas en aserrín de álamo y cedro. Revista Iberoamericana de Micología 20, 16- 20.


Polizeli, M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A. and Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology 67, 577-591.

Raghukumar, C., Muraleedharan, U., Gaud, VR. and Mishara, R. (2004). Xylanases of marine fungi of potential use for biobleaching of paper pulp. Journal of Industrial Microbiology and Biotechnology 31, 433-441.

Ramos-Sanchez, L.B., Cujilema-Quitio, M.C., Julian-Ricardo, M.C., Cordova, J. and Fickers, P. (2015). Fungal Lipase Production by SolidState Fermentation. Journal of Bioprocess and Biotechnology 5, 2.

Sethuraman, A., Akin, D. and Eroksson, E. (1999). Production of ligninolytic enzymes and synthetic lignin mineralization by the bird´s nest fungus Cyathus stercoreus. Applied Microbiology Biotechnology 52, 689-697.

Stajic, M., Persky, L., Friesem, D., Hadar, Y., Wasser, SP., Nevo, E. and Vukojevic, J. (2006). Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme and Microbology Technology 38, 65-73.

Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamotyo, K. and Inamori, Y. (2003). A termostable laccase from Streptomyces lavendulae ren-7: purification, characterization, nucleotide sequence and expression. Bioscience Biotechnology and Biochemistry 6, 2167-2175.

Téllez-Jurado, A., Arana-Cuenca, A., González- Becerra, A. E., Viniegra-González, G. and Loera, O. (2005). Expression of a heterologous laccase by Aspergillus niger cultured by solidstate and submerged fermentations. Enzyme and Microbiology Technology 38, 665-669.

Téllez-Téllez, M., Sánchez, C., Loera, O. and Díaz-Godínez, G. (2005). Differential patterns of constitutive intracellular laccases of the vegetative phase of Pleurotus species. Biotechnology Letters 27, 1391-1394.

Téllez-Téllez, M., Fernández, FJ., Montiel-González, AM., Sánchez, C. and Díaz-Godínez, G. (2008). Growth and laccase production by Pleurotus ostreatus in submerged and solidstate fermentation. Applied Microbiology and Biotechnology 81, 675-679.

Tellez-Téllez, M., Sánchez, C., Díaz, R. and Díaz-Godínez, G. (2012). Zymogram patterns of extracellular laccases of Pleurotus species grown on non-inducer agar medium. Revista Mexicana de Ingeniería Química 11, 383-388.

Tlecuitl-Beristain, S., Sánchez, C., Loera, O., Robson, G. D. and Díaz-Godínez, G. (2008). Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Mycology Resources 112, 1080-1084.

Velázquez, L., Téllez-Téllez, M., Díaz, R., Bibbins-Martínez, M. D., Loera, O., Sanchez, C., Tlecuitl-Beristain, S. and Díaz-Godínez, G. (2014). Laccase isoenzymes of Pleurotus ostreatus grown at different pH in solidstate fermentation using polyurethane foam as support. Annual Research Review in Biology 4, 2566-2578.

Viniegra-González, G., Favela-Torres, E., Águilar, C. N., Romero-Gómez, S. J., Díaz-Godínez, G. and Augur, C. (2003). Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal 13, 157-167.

Viniegra-González, G. and Favela-Torres, E. (2006). Why solid-state fermentation seems to be resistant to catabolite repression. Food Technology and Biotechnology 44, 397-406.

Zakariashvili, N. G. and Elisashvili, V. I. (1993). Regulation of Cerrena unicolor lignocellulolytic activity by a nitrogen source in culture-medium. Microbiology 62, 525-528.
Published
2019-11-14
How to Cite
Álvarez, J., Sánchez, C., Díaz, R., & Díaz-Godínez, G. (2019). CHARACTERIZATION OF PRODUCTION OF LACCASES, CELLULASES AND XYLANASES OF Pleurotus ostreaus GROWN ON SOLID-STATE FERMENTATION USING AN INERT SUPPORT. Revista Mexicana De Ingeniería Química, 15(2), 323-331. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/998
Section
Biotechnology