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Abstract
This paper considers the stabilization and control of linear time invariant systems containing two unstable poles, a
“stable” zero and time delay. It is well known that time delays complicate the stability analysis and the design
of appropriate control strategies. For this reason, we propose a simple control strategy based on an observer
system with the aim of stabilize this class of systems. Necessary and sufficient conditions are stated in order
to guarantee the stability of the closed loop system. Once the stability conditions are satisfied, only the plant
model and four proportional gains are enough in order to implement the proposed control strategy. Finally, some
examples are presented in order to illustrate the proposed control strategy performance, showing some robustness
when uncertainties are presented in the time delay value.

Keywords: time-delay, unstable systems, stabilization, observer, linear systems.

Resumen
El presente trabajo considera el problema de la estabilización y control de sistemas lineales e invariantes en el tiempo
que contienen dos polos inestables, un cero “estable” y tiempo de retardo. Es conocido que los retardos complican
el análisis de estabilidad de los sistemas ası́ como el diseño de estrategias de control adecuadas. Por esta razón, se
propone una sencilla estrategia de control basada en un sistema observador con la finalidad de estabilizar esta clase
de sistemas. Se presentan condiciones necesarias y suficientes que garantizan la estabilidad del sistema en lazo
cerrado. Una vez satisfechas dichas condiciones, solo el modelo de la planta y cuatro ganancias proporcionales son
necesarias para implementar la estrategia de control propuesta. Finalmente, se presentan algunos ejemplos con la
finalidad de ilustrar el desempeño de la estrategia de control propuesta, mostrando cierta robustez cuando se presenta
incertidumbre en la dimensión del tiempo de retardo.

Palabras clave: retardo, sistemas inestables, estabilización, observador, sistemas lineales.

1 Introduction

Time-delay is the property of a physical system by
which the response to an applied signal is delayed
in its effect. Systems with delays are very common
in the world, they appear in various systems as
biological, ecological, social, engineering systems,
etc. and are due to several mechanisms like material

or energy transport, recycling loops, etc. In addition,
actuators, sensors and field networks that are involved
in feedback loops usually introduce such delays,
(Zhong, 2006). Also delays can be used in modeling
reduction where high-order (finite-dimensional)
systems are approximated (in some norm sense) by
low order systems with delays, (Skogestad, 2003).
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It is well known that time-delay is often a source
of complex behaviors (oscillations, instability and
bad performance) in many dynamic systems. Thus,
considerable attention has been paid on this kind of
systems in order to understand how the delay term
may deteriorate the behavior of the system and to
control their effects for achieve a better performance
on closed-loop systems, (Niculescu, 2001, Gu et al.
2003, Richard, 2003).

Several control strategies have been developed to
deal with delayed systems. A common approach is
to approximate the time-delay operator by means of
a Taylor or Padé series which could leads to a non-
minimum phase system with rational transfer function
representation. Another classical control approaches
for time-delay systems includes Proportional Integral
Derivative (PID) control, classical smith predictors
(SPC), etc., (Smith, 1957, Palmor, 1996, Silva et al.,
2004).

Open-loop unstable processes arise frequently
in chemical and biological systems and are
fundamentally difficult to control. Unstable time-
delay systems represent a challenge for control
design, for instance, the SPC scheme does not have
a stabilization step, which restricts its application to
open-loop stable plants. To get over this problem,
some modifications of the SPC original structure
have been proposed to deal with non-stable delayed
process, for instance, Rao et al. (2007) have presented
an efficient modification to the Smith predictor in
order to control unstable first order system plus time
delay. With a different perspective, Normey-Rico and
Camacho (2008) propose a modification to the original
Smith structure in order to deal with unstable first
order delayed systems. Using a similar structure, the
result is extended to delayed high order systems in
Normey-Rico and Camacho (2009). In both papers,
a robustness analysis is done concluding that for
unstable dead time dominant systems, the closed-loop
system can be unstabilized with an infinitesimal value
of modeling error, i.e., that robustness is strongly
dependent on the relationship τ/τun, where τ is the
process time delay and τun is the dominant unstable
time-constant. For the control scheme proposed in
these later two papers, it can be easily proven that
in the case of unstable plants, the internal stability
is not guaranteed. In fact, an unstable estimation
error is obtained and, as a result, even a minimal
non zero initial condition at the original plant or in
the controller, produces an internal unbounded signal.
Notice that in a practical situation it is not possible
to exactly measure the initial condition of the plant to

assign the same value to the model considered on the
modified Smith compensator.

Following the same idea of the Smith predictor,
in del-Muro-Cuellar et al. (2007) it is proposed an
observer based controller, but designed by mean of
a partition and a Padé approximation of the delay
term. It is important to note that the results in
that paper seems to be adequate for the numerical
examples presented, but there are no formal results
considering the maximal size of delay that can be
accepted. In this way, in Márquez et al. (2010)
an observer based control structure is proposed and
necessary and sufficient conditions in terms of the
delay length are stated for the stabilization and control
(step tracking and disturbance rejection) of delayed
systems. However, this result is restricted to first order
systems.

Nevertheless, many chemical and biological
systems present second-order behavior. Continuous
stirred tank reactors, polymerization reactors and
bioreactors are inherently unstable by design; this
type of systems can be modeled as open-loop unstable
second order plus time delay models, (Rao and
Chidambaram, 2006, Shamsuzzoha et al., 2007).

In this work it is proposed a simple control
strategy based on an observer based schema with
the aim of stabilize unstable second-order systems
with delay at the input - output direct path. In
particular, plants including one “unstable” zero are
considered. Necessary and sufficient conditions in
order to guarantee the stability of the closed loop
system are stated. The stabilizer structure relies on
an observer-based structure with a memory observer
and a memory less state feedback. On the contrary of
modified Smith predictors, the scheme only contains
discrete time delay (and not distributed ones) which
makes easy its practical implementation (see Zhong,
2006, for details on numerical implementation of
modified Smith predictor scheme).

This paper is organized as follows; Section 2 is
dedicated to the problem formulation. The Section
3 yields the preliminaries results used to obtain the
main result of this work. An observer based controller
is proposed in Section 4, in order to stabilize the
unstable second order systems without zeros. In
the main Section 5, necessary and sufficient stability
conditions for the proposed controller scheme are
stated for systems including one “stable” zero. Then,
in Section 6 numerical simulations are presented in
order to illustrate the controller performance. Finally
some concluding remarks are stated in Section 7.
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2 Problem statement
Consider the following class of single-input single-
output (SISO) linear systems with delay at the direct
path:

G(s) =
Y(s)
U(s)

=
N(s)
D(s)

e−τs (1)

where U(s) and Y(s) are the input and output signals
respectively, τ ≥ 0 is the time delay, N(s) and D(s) are
polynomials in the complex variable s and G(s) is the
delay-free transfer function. Notice that with respect
to the class of systems (1) a traditional control strategy
based on an output feedback of the form

U(s) = [R(s) − Y(s)]Q(s) (2)

produces a closed-loop system given by:

Y(s)
R(s)

=
Q(s)G(s)e−τs

1 + Q(s)G(s)e−τs (3)

where the exponential term e−τs located at the
denominator of the transfer function (3) leads to a
system with and infinite number of poles and where
the closed-loop stability properties cannot easily be
stated. From the classical structure of the Smith
predictor (SPC) given in Fig. 1, it is known that the
transfer function of the closed-loop system is obtained
as follows:

Y(s)
R(s)

=
C(s)P(s)

1 + C(s)P(s)
e−τs (4)

It can be noticed that the delay term is shifted outside
of the characteristic equation of the system. Under
ideal conditions, i.e., exact knowledge of the plant
parameters, the SPC provides a successful future
estimation time units ahead of the y(t) signal, which
could be used like a control signal in a specific
feedback scheme, (Smith, 1957, Palmor, 1996).
Unfortunately, the classical structure of the SPC is
restricted to stable processes. Different authors have
proposed several modifications to the original SPC
structure to give solution to some particular cases,
(Normey-Rico and Camacho, 2008, Normey-Rico and
Camacho, 2009, Rao et al., 2007, Zhong, 2006).
As was mentioned above, a minimal initial condition
difference between the original plant and the model
produces an internal unbounded signal, which can be
produce instability in practical situations.

This work proposes an observer based control
scheme in order to stabilize an unstable second
order system characterized by the following transfer
function:

Y(s)
U(s)

=
α(s + β)

(s − a)(s − b)
e−τs (5)

Fig. 1. The classical Smith predictor.

where, without loss of generality, a ≥ b > 0 and
β, τ > 0.

3 Preliminary results
Preliminary results are presented here. They will be
used later in order to state the stability conditions of
the studied system. Let us consider the following
unstable first order system plus time delay

Y(s)
U(s)

=
α

(s − a)
e−τs (6)

with a > 0; and a proportional output feedback control
as follows:

U(s) = R(s) − kY(s) (7)

This produces the closed-loop system:

Y(s)
R(s)

=
αe−τs

s − a + kαe−τs (8)

The following result has been widely studied in
the literature and the proof can be easily obtained
by considering different approaches as a classical
frequency domain. An alternative simple proof based
on a discrete time approach is shown in Márquez et al.
(2010).

Lemma 1. Consider the delayed system (6) and the
proportional output feedback (7). Then, there exists a
proportional gain k such that the closed loop system
(8) is stable if and only if τ < a−1.

Now, consider the system characterized by:

Y(s)
U(s)

=
α

(s − a)(s + c)
e−τs (9)

with a, c > 0. Note that the system has only
one “unstable” pole. With the proportional output
feedback given by Eq. (7), we get a closed-loop
system as follows:

Y(s)
R(s)

=
αe−τs

(s − a)(s + c) + kαe−τs (10)
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Fig. 2. Controller scheme.

Lemma 2. Consider the delayed system (9) and the
proportional output feedback (7). Then, there exists a
proportional gain k such that the closed loop system
(10) is stable if and only if τ < a−1 − c−1.

The proof of this result can easily be obtained by
mean of different approaches, as the frequency domain
based approach shown in Del Muro et al. (2009).

4 Control strategy proposed

Consider the class of systems studied in this work
characterized by the transfer function

Y(s)
U(s)

=
αeτs

(s − a)(s − b)
(11)

with a, b > 0 and assuming without loss of generality
a ≥ b. An observer based control strategy is proposed,
which allows getting the estimation of the internal
signals of the system, to be used as a control signal
for the real process.

As a first step, the stability conditions for the
controller and the observer are stated separately. These
conditions will be used later to obtain the observer
based controller closed loop stability conditions.

4.1 Controller scheme

Now, let us introduce the proportional state feedback
control strategy shown in the Fig. 2, where:

Ga =
α

s − a
, (12)

and

Gb =
1

s − b
. (13)

Lemma 3. Consider the delayed system (11) with the
state feedback controller shown in Fig. 2. There exist
constants k1 and k2 such that the closed-loop system is
stable if and only if τ < b−1.

Fig. 3. Observer structure.

Proof. The aim of this proof is to apply Lemmas 1 and
2 to the closed loop system shown in the Fig. 2, with
the following transfer function:

Y(s)
R(s)

=
αe−τs

(s − a + αk1)(s − b) + αk2e−τs (14)

Let us consider αk1 > a. Then, we get a different
system, only with one unstable pole, which can be
stabilized under the stability condition given in Lemma
2, i.e., there exist constant gains k1 and k2 such that
the closed-loop system is stable if and only if τ <
b−1−(αk1−a)−1. Now, as k1 can be as large as we wish,
there exist proportional gains k1 and k2 such that the
closed-loop system is stable if and only τ < b−1. �

Note that the root locus technique and frequency
domain analysis can be used to compute proper
constant gains k1 and k2 in order to stabilize the
proportional state feedback scheme.

4.2 Observer scheme

In most of the practical applications, some of the state
variables may not be measured and then the control
scheme of Fig. 2 cannot be implemented. Thus, an
observer scheme based on an output injection strategy,
as the presented in Fig. 3, can be implemented. The
stability of the scheme in Fig. 3 (and consequently the
error convergence in the observer schema as we will
see later) can be tackled as follows.

Lemma 4. Consider the delayed system (11), and the
static output injection scheme shown in Fig. 3. There
exist constants g1 and g2 such that the closed-loop
system is stable if and only if τ < a−1.

Proof. Consider the delayed system with the static
output injection scheme shown in Fig. 3. The closed
loop transfer function of the delayed system can be
described as:

Y(s)
U(s)

=
αe−τs

(s − a)(s − b + g2) + αg1e−τs (15)

As in the controller structure, the purpose of the proof
is to apply the conditions stated in Lemmas 1 and 2
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to the observer scheme shown in the Fig. 3. First,
consider g2 > b, thus, we get a system with only
one unstable pole, which can be stabilized under the
condition given in Lemma 2, i.e., considering the
delayed system (5), and the static output injection
scheme shown in Fig. 3, there exist constants g1 and g2
such that the closed-loop system is stable if and only
if τ < a−1 − (g2 − b)−1.

As g2 can be as large as we wish, then we can
conclude that τ < a−1. �

4.3 Observer-based controller

Now, the proposed observer based controller is
presented in Fig. 4, where the observer allows
estimating the internal variable w(t) to be used in state
feedback controller. It is important to note that, in
the proposed scheme, only four proportional gains
are enough to get a stable closed loop behavior. As
a consequence of the previous results, the following
lemma can be stated.

Lemma 5. Consider the observer based controller
scheme shown in Fig. 4 and the time delay system
given by Eq. (11). There exist gains k1, k2, g1 and g2
such that the closed-loop system is stable if and only if
τ < a−1.

Proof. As a first step, in order to ensure an accurate
estimation of the internal variables, let us demonstrate
that the error signal converges asymptotically to zero,
i.e., limt→∞[ŵ(t) − w(t)] = 0 if and only if τ < a−1.
Consider the state space representation of the system
(11) characterized by the following equation:

ẋ(t) = A0x(t) + A1x(t − τ) + Bu(t)
y(t) = Cx(t)

(16)

with x(t) = [w(t)x2(t)]T and where:

A0 =

[
a 0
0 b

]
, A1 =

[
0 0
1 0

]
,

B =

[
α
0

]
, C =

[
0 1

]
Note that the state space representation characterized
by (16) can be returned to its transfer function
representation by mean of:

Y(s)
U(s)

= C(sI − A0 − A1e−τs)−1B (17)

The dynamics of the estimated states and the control
law can be described as follows

ˆ̇x(t) = A0 x̂(t)+A1 x̂(t−τ)+Bu(t)−G (x̂(t) − y(t)) (18)

u(t) = −Kx̂(t) (19)

where x̂(t) is the estimated state of x(t) and the
proportional gains are defined by:

K =
[

k1 k2

]
, G =

[
g1 g2

]T
Let e(t) := x̂(t) − x(t), then we have:

ė(t) = (A0 −GC)e(t) + A1e(t − τ) (20)

Noting xe = [x(t) e(t)]T , and after a simple
manipulation of variables we have the following
closed loop system with the observer and the controller
proposed in the Fig. 4:

ẋe (t) =

[
A0 − BK BK

0 A0 −GC

]
xe (t)

+

[
A1 0
0 A1

]
xe (t − τ) (21)

y(t) =[C 0]

It is easy to see that the observer and the controller can
be designed separately, i.e. it satisfies the separation
principle. Hence, the stability of the observer
scheme is enough to assure the error convergence,
i.e., there exist proportional gains g1 and g2 such that
limt→∞[ŵ(t) − w(t)] = 0 if and only if τ < a−1.

Then, considering the fact that the observer
and controller can be designed independently and
reminding the stability conditions stated previously
in Lemma 3 and Lemma 4, it is clear that the
observer stability condition is more restrictive than
the controller stability condition, i.e., a−1 < b−1.
Therefore, there exist k1, k2, g1 and g2 such that the
closed-loop system is stable if and only if τ < a−1.

Fig. 4. Control strategy proposed. �
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5 Second order unstable systems
with a stable zero plus time
delay

5.1 Controller scheme

Considering the unstable system given by Eq. (5) and
the controller structure shown in Fig. 2, with:

Ga(s) =
α

s − a
, (22)

and

Gb(s) =
s + β

s − b
, (23)

the stability conditions for the controller scheme are
introduced below.

Lemma 6. Consider the delayed system (5), and the
state feedback controller shown in Fig. 2. There exist
constants k1 and k2 such that the closed-loop system is
stable if and only if τ < b−1.

Proof. As in the Section 4, the objective of the proof is
to apply the results of Lemma 1 to the following closed
loop system transfer function

Y(s)
R(s)

=
α(s + β)e−τs

(s − a + αk1)(s − b) + k2α(s + β)e−τs (24)

Let us choose k1 = (β + α)/α, then we obtain the
following equivalent system:

Y(s)
R(s)

=
αe−τs

s − b + k2αe−τs (25)

Hence, it is possible to attach the stability
conditions of Lemma 1, i.e., there exist constant gains
k1 and k2 such that the closed-loop system is stable if
and only if τ < b−1. �

5.2 Observer scheme

First, let us consider the following modification to
the static output injection scheme shown in Fig.
3, concerning the output injection to the subsystem
Gb(s). Thus, we can state the following Lemma.

Lemma 7. Consider the delayed system (5), and
the static output injection scheme shown in Fig. 3
(considering the modification shown in Fig. 5). There
exist constants gains g1 and g2 such that the closed-
loop system is stable if and only if τ < a−1.

Proof. Consider the transfer function of the output
injection scheme shown in Fig. 3, with Gb given by
Eq. (23).

Y(s)
U(s)

=
α(s + β)e−τs

(s − a)(s − b + g2) + αg1(s + β)e−τs . (26)

Let us choose g2 = β + b then we obtain the following
equivalent system:

Y(s)
R(s)

=
αe−τs

s − a + αg1e−τs (27)

Hence, it is possible to attach the stability conditions
of Lemma 1, i.e., there exist constant gains g1 and g2
such that the closed-loop system is stable if and only
if τ < a−1. �

5.3 Observer-based controller

Finally, the closed loop stability conditions for the
observer-controller structure shown in the Fig. 4, with
the sub-systems Ga(s) and Gb(s) given by eqs. (22)-
(23) are stated in the incoming Lemma.

Lemma 8. Consider the observer based controller
scheme shown in Fig. 4 and the time delay system (5).
There exist constants k1, k2, g1 and g2 such that the
closed-loop system is stable if and only if τ < a−1.

A complete proof can be done based in the state
space representation of the closed loop system (21).
Therefore, as the control structure holds the separation
principle, i.e., the controller and the observer can be
designed independently; it is easy to conclude that
there exist k1, k2, g1 and g2 such that the closed-loop
system is stable if and only if τ < a−1.

Fig. 5. Zero-pole state space representation.

6 Numerical examples
The following examples are introduced in order to
illustrate the performance of the control strategy
proposed in this work.
Example 1. Consider the following second order
unstable system plus time delay:

Y(s)
U(s)

=
e−s

(s − 0.7)(s − 0.4)
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For this example without zeros, we have a = 0.7,
b = 0.4, τ = 1 and α = 1. It is clear, since
τ = 1 < a−1 = 1.4826, that the stability condition
given in Lemma 5 is satisfied.

The following procedure is proposed in order to
design the controller structure. To ensure the existence
of a proportional gain k2 such that the closed loop
system is stable, from Lemma 3 we get:

k1 >
1

α(b−1 − τ)
+

a
α

Let us choose k1 = 50.7, and then with a frequency
domain analysis, it is possible to compute the
proportional gain k2. For this example, 20 < k2 <
64.93. For the design of the observer, a very similar
procedure is implemented. From Lemma 4 we get:

g2 >
1

a−1 − τ
+ b

Let us choose g2 = 204.4, then by mean of a
frequency domain analysis it is possible to compute
the proportional gain g1. For this example, 14 < g1 <
21.55.

Hence, the proportional gains computed for this
example are k1 = 50.7, k2 = 30, g1 = 18 and
g2 = 20.4. Fig. 6 illustrates the performance of
the observer-based controller for a step reference in
numerical simulations; the output y(t) and the error
e(t) = ŷ(t) − y(t), are shown respectively. The
continuous line indicates the output of the closed
loop system with identical initial conditions between
y(t) and ŷ(t). The dashed line point to the system
performance whit different initial conditions (y(0) −
ŷ(0) = 0.2).

Fig. 6. Example 1. Control performance.

Example 2. Chemical reactors often have significant
heat effects, so it is important to be able to add
or remove heat from them. In a jacketed CSTR

(continuously stirred tank reactor) the heat is added
or removed by virtue of the temperature difference
between a jacket fluid and the reactor fluid. Often,
the heat transfer fluid is pumped through agitation
nozzles that circulate the fluid through the jacket at
high velocity, as is shown in Fig. 7.

Fig. 7. Continuous stirred tank reactor.

The following example has been tacked from
Bequette (2003), and some parameters of the CSTR
were changed in order to find an adequate model
to apply the control strategy proposed in the present
work. Here we consider a CSTR carrying out the
simple reaction A → B. The balance on component
A is

V
dCA

dt
= FCA f − FCA − VrA (28)

where CA is the concentration of component A in the
reactor and rA is the rate of reaction per unit volume.
The Arrhenius expression is normally used for the
rate of reaction. A first order reaction results in the
following

rA = k0e(− Ea
RT )CA (29)

where k0 is the frequency factor, Ea is the activation
energy, R is the ideal gas constant, and T is the reactor
temperature on an absolute scale. The reactor energy
balance, assuming constant volume, heat capacity (cp)
and density (ρ), and neglecting changes in the kinetic
and potential energy is

Vρcp
dT
dt

= Fρcp(T f − T ) + (−∆H)VrA − UA(T − T j)

where −∆H is the heat of the reaction, U is the heat
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transfer coefficient, A is the heat transfer area, T f is
the feed temperature, and T j is the jacket temperature.

The parameter values of the system are given as
Ea = 32, 400 Btu/lbmol, k0 = 16.96 × 1012 hr−1,
−∆H = 39, 000 Btu/lbmol, U = 75 Btu/hr ft2◦F,
ρcp = 53.25 Btu/ft3◦F. The operating values of the
reactor are given by A = 309 ft2, CA f = 0.132
lbmol/ft3, T f = 60◦F, the operating volume V = 500
ft3 and the flow rate F = 300 ft3/hr. A steady
state operating point is CA = 0.066 lbmol/ft3 and
T = 101.1◦F. Let consider the jacket temperature as
the manipulated variable and the temperature of the
CSTR as the controlled variable. Linearization around
this steady state operating point yields the following
transfer function model (by assuming a measurement
time delay of 0.15 hr).

T (s)
T f (s)

=
0.87(s + 4.59)

(s − 3.74)(s − 0.2)
e0.15s

For the current example, the parameters of the system
are a = 3.74, b = 0.2, β = 4.59, α = 0.87 and τ = 0.15.
It is clear, sinceτ = 0.15 < a−1 = 0.267, that the
stability condition given in Lemma 7 is satisfied.

Hence, from Lemmas 6 and 7, for the proposed
control strategy the proportional gains computed for
this example are k1 = 9.57, k2 = 2.5, g1 = 5 and
g2 = 4.79. Figure 8 illustrates the performance of the
observer-based controller for a unit step reference in
numerical simulations; the output y(t) and the error
signals are shown respectively. The continuous line
denotes the performance for the nominal system. The
dashed line suggests the performance for the system
whit an uncertainty in the delay operator of 20 %. The
method performs well for nominal conditions as well
as for the uncertain process.

Fig. 8. Example 2 Control performance

Conclusions
A simple observer based controller is proposed in
this work in order to stabilize second order unstable
systems with two unstable poles, one “stable” zero
plus time delay. Necessary and sufficient conditions
are stated in order to guarantee the stability of the
proposed schema. Therefore, only the model of the
process and four proportional gains are enough to
obtain a stable behavior of the closed loop system.

The procedure for the computation of the constant
gains is quite easy and can be realized by mean a
frequency domain analysis. The performance reached
for the control structure proposed is shown by mean of
numerical simulations, where it can be seen that some
robustness is present in the control strategy under
different initial conditions and for uncertainty in the
delay term.

References
Bequette, B.W. (2003). Process Control. Modelling,

Design and Simulation. Prentice Hall.
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Malakhovski, E. and Mirkin, L. (2006). On
Stability of Second-order Quasi-polynomials
with a Single Delay. Automatica 42(6), 1041-
1047.

Márquez, J., Del Muro, B., Velasco, M. and Alvarez,
J. (2010). Control based in an observer scheme
for first-order systems with delay. Revista
Mexicana de Ingenierı́a Quı́mica 9(1), 43-52.

Niculescu, S.-I. (2001). Delay Effects on Stability: A
Robust Control Approach (Vol. 269). Londres,
Springer.

558 www.rmiq.org



Novella and del Muro/ Revista Mexicana de Ingenierı́a Quı́mica Vol. 10, No. 3 (2011) 551-559

Normey-Rico, J.E. and Camacho, E.F. (2008).
Dead-time compensators: A survey. Control
Engineering Practice 16(4), 407-428.

Normey-Rico, J.E. and Camacho, E.F. (2009).
Unified approach for robust dead-time
compesator Design. Journal of Process Control
19, 38-47.

Palmor, Z.J. (1996). Time delay compensation Smith
predictor and its modifications. The Control
Hand-Book. CRC press, 224-237

Rao, A.S. and Chidambaram, M. (2006). Enhanced
two-degrees-of-freedom control strategy for
second-order unstable processes with time
delay. Industrial and Engineering Chemistry
Research 45(10), 3604-3614.

Rao, A.S., Rao, V.S. and Chidambaram, M. (2007).
Simple analytical design of modified Smith
predictor with improved performance for
unstable first-order plus time delay (FOPTD)
processes. Industrial and Engineering
Chemistry Research 46(13), 4561-4571.

Richard, J.P. (2003). Time-delay systems:an
overview of some recent advances and open
problems. Automatica 39, 1667-1694.

Shamsuzzoha, M., Jeon, J. and Lee, M. (2007).
Improved analytical PID controller design for
the second order unstable process with time
delay. Computer Aided Chemical Engineering
24, 901-906.

Silva, G. J., Datta, A. and Bhattachaiyy, S.
(2004). PID Controllers for Time-Delay
Systems. Birkhäuser.
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