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2Universidad Autónoma de Yucatán. Facultad de Ingenierı́a Quı́mica, Campus de Ingenierı́as y Ciencias Exactas,
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Abstract
A novel type of iterative learning control (ILC) strategy for the optimization of fedbatch fermentation processes is

developed and applied to lactic acid production as case study. Due to the fact that fedbatch reactors are permanently
in transient regime, the tracking behavior of conventional ILC deteriorates as the number of off-line measurements
decreases. The first contribution of this study was to use an interpolation method in order to reconstruct the input
continuity between the measurement samples. Then, control performance was improved by using an ILC algorithm
based on the parameterization of the input profile with piecewise continuous exponential functions that are specially
adequate for fedbatch processes. Furthermore, the proposed learning rule was able to track accurately the process
output reference with only two off-line measurements. A simulation study demonstrates the feasibility of the ILC
approach.

Keywords: iterative learning control, fedbatch, biological process, lactic acid production, simulation.

Resumen
Un novedoso tipo de estrategia de control por aprendizaje iterativo (ILC) para la optimización de procesos
de fermentación en modo fedbatch es presentado y aplicado como caso de estudio en la producción de ácido
láctico. Debido al hecho de que los reactores en modo fedbatch están permanentemente en régimen transitorio,
el comportamiento de seguimiento de ILC’s convencionales se deteriora a medida de que el número de mediciones
baja. La primera contribución de este estudio fue de utilizar un método de interpolación para la reconstrucción
de la continuidad de la entrada entre las muestras de medición. Luego, el rendimiento de control fue mejorado
a través del uso de un algoritmo ILC basado en la parametrización del perfil de entrada, utilizando funciones
exponenciales continuas por parte especialmente adecuadas para procesos en modo fedbatch. Además, la ley de
aprendizaje propuesta fue capaz de seguir adecuadamente la referencia de salida del proceso utilizando únicamente
dos mediciones fuera de lı́nea. Un estudio de simulación demuestra la factibilidad del propuesto ILC.

Palabras clave: control por aprendizaje iterativo, fedbatch, proceso biológico, producción de ácido láctico,
simulación.
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1 Introduction

Mathematical modeling, identification and real-time
control of fermentation processes still represent a
challenging area of endeavor for biotechnologists
and control engineers. In particular, the control
design is made difficult by at least two well-known
major factors. First, the processes involving living
microorganisms exhibit large nonlinearities, strongly
coupled variables and often poorly understood
dynamics. Second, real-time monitoring of many
key process variables, which are needed by advanced
control algorithms, is hampered by the lack of reliable
on-line sensors (Bastin and Dochain, 1990).

In this work, the attention is focused on
fedbatch reactors, in which substrates are fed either
intermittently or continuously during the course of
fermentation. This operating mode offers many
advantages –at least from an industrial viewpoint–
over batch and continuous cultures. The main
advantage is concretely economical, since improved
productivity may be obtained by providing controlled
conditions in the supply of inhibitory substrates
(Shioya, 1992). However, in contrast to continuous-
flow reactors which operate continuously in steady-
state, fedbatch reactors are permanently in a transient
regime and therefore present challenging control
design problems. Different trends for the control
of fedbatch fermentation processes have emerged,
principally optimal and adaptive approaches. The
main drawback of the first trend is that model-
based optimal control method, which provides a
theoretically realizable optimum under the assumption
of a perfectly known model, could be dangerously
misleading in a real-life implementation context.
On the other hand, model-independent adaptive
controllers do not guarantee a priori optimality of
the control policy results. Finally, combining both
trends, the approach based on the concept of minimal
modeling of the kinetics and that does not suffer
from the above difficulties has emerged to fill the
gap between modeling accuracy and control needs
(Bastin and Dochain, 1990; Van Impe and Bastin,
1995). In these references, it is also demonstrated how
optimal -in the sense of optimal productivity- control
of fedbatch processes could be replaced by a common
nearly optimal regulation control case.

According to this last approach, the control
objective is stated in terms of substrate concentration
setpoint tracking to fix the influent flow rate and the
effective production yield. The output tracking task
is then realized by an iterative learning control (ILC)

algorithm. The contributions of Arimoto et al. (1984)
are widely considered to be the origins of ILC while
the main motivation for the development of ILC is
the industrial robot (Bien and Xu, 1998; Chen and
Wen, 1999). ILC is such a flexible framework that
most existing feedback control methods can be used
to design the ILC updating law (Wang et al., 2009),
either based on direct or indirect control schemes such
as PID-type (Tan et al., 2007), model predictive (Wang
et al., 2008a), neural network (Zhang, 2008; Xiong
et al., 2010), fuzzy logic (Chien, 2000, 2008), robust
(Shi et al., 2006), adaptive (Chien and Tayebi, 2008),
fault-tolerant (Wang et al., 2006) or dynamic output
feedback (Wang et al., 2008b).

The idea of implementing an ILC strategy to
control fedbatch bioprocesses is not new and some
interesting results have been reported in the literature,
e.g. feedback-assisted PI-type ILC to control ethanol
concentration (Choi et al., 1996), robust ILC to
control an exothermic chemical reactor (Mezghani
et al., 2001) or ILC based on batch-wise linearized
model of a fermentation process (Zhang et al., 2012).
The choice of an ILC technique, justified by the
repetitive nature of the fedbatch cultures, is motivated
by the following advantages upon standard control
methods: a) since ILC uses information from previous
executions of the task in order to improve the tracking
performance from trial to trial, it does not require any
on-line measurement, and hence, nor on-line sensor;
b) ILC allows limited off-line measurements; c) ILC
design is model-independent.

In this work, a lactic acid fermentation process
(LAFP) is used as a case study. Lactic acid has
traditionally been used in the food industry as an
acidulating and/or preservative agent, and in the
chemical industry for cosmetic and textile applications
(Datta et al., 1995). Fermentation processes, in
which lactic acid is obtained from glucose, have
currently received much more attention because of
the increasing demand for new biomaterials such as
biodegradable and biocompatible polylactic products.
The main goal in applying control methods to LAFP
systems is to improve operational stability, production
efficiency and profit.

A PD-type conventional ILC updating law is
firstly tested, and the simulation study shows how
the tracking performances deteriorate as the number
of sampling measurements decreases. In order to
circumvent this drawback, the same ILC updating
law using piecewise continuous functions (linear and
polynomial) to reconstruct the input profile between
sampling points is secondly tested (Ben Youssef
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et al., 2004). Then, an input parameterized ILC
controller based on the iterative adjustment of the
exponential control profile parameters is designed
and implemented. Finally, the convergence property
of the algorithm made possible the design of a
control strategy that only needs two off-line glucose
measurements. Since the main objective of the
proposed approach is to improve the feeding profile
from run to run, a PD-type ILC controller was chosen
rather than a higher order scheme such as PID because
the integral action is already operating in the iteration
direction. Another reason for this choice is that a PID-
type scheme, by increasing the controller order, would
increase the complexity of a rigorous convergence
proof.

The paper is organized as follows. The general
optimal control problem of fedbatch fermentation
processes is presented in section 2. The statement
of the iterative learning control problem for fedbatch
fermentation processes is discussed in section 3. In
section 4, the special type of ILC algorithm based on
parameterization of the control profile is derived and
its performances compared to those of a conventional
PD-type ILC scheme. The simulation results are
carried out using the case study of a fedbatch lactic
acid fermentation process. Concluding remarks end
the paper.

2 Fedbatch fermentation optimal
control problem

This study considers the class of fedbatch fermentation
processes described by a first-order dynamical model
(derived from mass balance considerations) of the
form:

ċ = ϕc(Ξ,Θ)c −c u
v

ṡ = − ϕs(Ξ,Θ)c −s u
v + sin

u
v

ṗ = ϕp(Ξ,Θ)c −p u
v

v̇ = u

(1)

where c, s and p denote respectively the
concentrations of cells, limiting substrate and product
in the liquid phase of the reactor. ϕc(.), ϕs(.) and ϕp(.)
are complex nonlinear functions of the state vector
Ξ = [c s p v]

′

and the constant kinetic parameter vector
Θ ∈ Rm. They represent respectively the specific
reaction rates of cell growth, substrate consumption
and product synthesis. sin is the influent substrate
concentration and v is the working volume. The feed
flow rate u serves as the input variable of the system.

Fedbatch control problem is an optimal control
problem. Since the objective of product synthesis via

fermentation processes is to maximize, in a minimal
time, the final quantity of product, a global criterion
may be given by:

J = γ1

∫ T f

0
p (τ) u (τ) dτ − γ2

∫ T f

0
dτ − γ3s f v f (2)

where γ1, γ2 and γ3 are weighting coefficients, s f v f

is the residual quantity of substrate and T f is the
shutdown time. This non-quadratic criterion and
additional constraints in the process variables force
to use techniques that involve iterations towards the
optimum, e.g. procedures based on Pontryagin’s
maximum principle, Green’s theorem or dynamical
programming. These techniques are not well adapted
to implement closed-loop control algorithms, but they
allow to determine open-loop optimal profiles of
the process variables. However, optimal control of
biological systems is a very model-sensitive approach.
For instance, besides a perfect analytical expression
of the specific reactions rates, i.e. ϕc(.), ϕs(.), and
ϕp(.), an optimal control algorithm would require
on-line measurement of the full state vector Ξ. In
biotechnological applications, these assumptions are
in practice never fulfilled.

A more realistic and practical solution consists in
implementing closed-loop controllers which regulate
one –if possible– process variable. The aim of such
sub-optimal strategy is to replace the given optimal
problem by a more common regulation one. Then,
this standard control problem can be solved by most
of conventional feedback control loops, e.g. a PI
control of fedbatch phenol degradation in Leonard et
al. (1999) or adaptive linearizing control of fedbatch
Penicillin G production in Van Impe and Bastin
(1995).

3 Fedbatch fermentation control
with ILC

In most industrial fedbatch fermentation applications,
the operating cycle is executed in a finite time interval
while the same operation will be repeated (see Fig.
1). It should also be pointed out that industrial
fedbatch production is traditionally carried out in
open-loop conditions using precalculated substrate
feeding profiles. In such a case, the idea of iterative
learning control is intuitively clearly applicable to
improve the fedbatch reactor performances from run
to run. Furthermore, when only partial knowledge
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Fig. 1: Operating cycle of the fedbatch fermentation process.

about the plant is available, the learning feature
of the ILC approaches serves as a bridge between
knowledge and experience. Moreover, as mentioned
in the introduction, classical ILC approach does not
require on-line measurements for its implementation,
circumventing thus the insufficient measurement
capability in most industrial fermentation systems,
and fedbatch LAFP in particular. Although ILC
only modifies the input command for the next
operation, it should be pointed out that it is actually
not an open-loop control operation (Arimoto et al.,
1984). While conventional controllers are closed-
loop in time, ILC is closed-loop in iterations since
updates are performed for the next iteration using the
measurements of the previous iteration.

Let an operation of the fedbatch system to be
controlled be denoted by subscript i and let the time
during a given trial be denoted by t, where t ∈[
0,T f

]
. The usual way to implement ILC is to use

the following general updating formula for the input
signal ui(t):

ui+1(t) = H(q) (ui(t) + L(q)ei (t)) (3)

where H(q) and L(q) are linear filters, not necessary
causal, and q is the time-delay operator. ei(t) , yd(t)−
yi(t) is the output tracking error and yd(t) the desired
output trajectory.

Let tk = {kT }k=1,...,N denotes the discrete interval,
N being the number of off-line measurements and T
the sampling period. The ILC’s objective is to derive
an optimal input sequence ud(t) for t ∈

[
0,T f

]
by

evaluating the error ei(tk) to adjust the input ui(tk) for
the next trial, such that yi(t) → yd(t) when i → ∞.

ui+1(t) for t ∈ [tk tk+1] is usually generated by a zero-
order hold (ZOH) function.

According to the discussion presented in section
2, the initial optimal fedbatch control problem, which
corresponds to the maximization of the performance
criterion given by Eq. (2), is replaced by a
scalar output regulation problem at some sub-optimal
setpoint y∗. In order to satisfy the standard ILC reset
conditions, i.e. yi(0) = yd(0) = y0 for all i, the desired
output trajectory is generated by the following first-
order filter:

yd(t) = (y0 − y∗) e−λt + y∗ (4)

The choice of a low substrate concentration control
strategy is common in fermentation applications since
it avoids nutrient spilling and cell growth limitation
due to product accumulation ( Van Impe and Bastin,
1995; Leonard et al., 1999; Ben Youssef et al., 2000).
In this study, the glucose setpoint value is set to y∗ = 3
gL−1, and the desired output trajectory is generated by
using Eq. (4) with λ = 2.

4 Case study: the fedbatch LAFP

4.1 The LAFP model
The dynamical model of the fedbatch lactic acid
fermentation process used in this paper is of the form
of Eq. (1). The process consists in lactic acid (p)
production by Lactobacillus casei (c) on glucose (s).
More details about the LAFP process are given in
Olmos-Dichara et al. (1997). The specific reaction
rates are modelled as follows:
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ϕc(Ξ,Θ) = µ(Ξ,Θ) − k0
ϕs(Ξ,Θ) = µ(Ξ,Θ)/Y

ϕp(Ξ,Θ) = δµ(Ξ,Θ) + β
(

s
Ks+s

) (5)

where

µ(Ξ,Θ) = µmax

 Kp

Kp + p

 ( s
Ks + s

) (
1 −

p
pc

)
(6)

The dependency of the parameters according to the
so-called growth factor α –denoted by an overbar– is
described by:

µmax = µm
∆α

Kαµ+∆α

K p = Kpm
∆α

Kαp+∆α

K s = Ksm
∆α

Kαs+∆α

(7)

where ∆α = α − α0. The model was designed
by Ben Youssef et al. (2005) and validated for six
experimental batch cultures corresponding to different
values of growth factor α, which may be considered as
a secondary substrate. The case α = 2 is arbitrary
chosen for fedbatch control simulations which are
obtained by integrating Eq. (1) using eqs. (5)–(7).
The meanings and values of the biological variables
and parameters are given in Table 1. Initial conditions
are x(0) = 0.2 g L−1, s(0) = 50 g L−1, p(0) = 0 g
L−1, α(0) = 2 and v(0) = 2 L. All the simulation runs

are carried out assuming in the first iteration the worst
case of a priori knowledge about the optimal input
trajectory ud(t) by setting u0(t) = 0 for all t, i.e. by
beginning the ILC procedure with a batch operating
mode.

4.2 Conventional ILC

A conventional ILC based using a ZOH function
is firstly applied to glucose concentration control
of fedbatch lactic acid fermentation process. The
iterative learning adjustment of ui(t) is done by using
the discrete PD-type updating formula:

ui+1(t) = ui (t) + kpei (t + 1) + kd (ei(t + 1) − ei(t)) (8)

where kp and kd are constant learning gains. Fig.
2 illustrates the time evolution at iteration i (for
i = 1, . . . , 15) of the main LAFP variables, i.e
the feed flow rate ui(t), the glucose concentration
si(t), the lactic acid concentration pi(t), the biomass
concentration ci(t) and the control error ei(t). Samples
are assumed to be taken each hour (T = 1 h), so
the number of glucose measurements is N = 200.
In order to visualize the algorithm convergence, the
evolution of the 2-norm of the error ‖ei(t + ∆t)‖2
versus iterations i with a time increment ∆t = 0.1 h
is shown in the same figure.

Table 1. Variables and parameters of the LAFP model

Symbol Value Description Unit
k0 0.02 Cell death constant h−1

Kpm 15 Inhibition constant g L−1

Ks 0.5 Affinity constant (anabolism) g L−1

Ksm 12 Affinity constant (catabolism) g L−1

Kαp 1.1 Saturation constant unitless
Kαs 4 Saturation constant unitless
Kαµ 0.2 Saturation constant unitless
pc 95 Lactic acid tolerance concentration g L−1

sin 50 Feeding glucose concentration g L−1

Y 0.98 Yield coefficient g g−1

α0 0.02 Minimal growth factor unitless
β 0.9 Production uncoupling constant g L−1 h−1

δ 3.5 Production coupling constant g L−1

µm 0.45 Maximum specific growth rate h−1
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Fig. 2: Conventional PD-Type ILC for N = 200; main variables, input and error evolution.

The learning gains are kp = 0.04 and kd = 0.01.
It is shown that convergence of the output to the
desired trajectory yd(t) is obtained after approximately
12-13 iterations. No a priori knowledge about the
process model was necessary for the ILC algorithm
to control satisfactorily the fedbatch LAFP system.
‖ei(t)‖2 does not converge to zero because of the
accumulation of errors during the initial lag phase of
substrate consumption, i.e. t ∈ [0, t1] where t1 '
30 h. During this initial time interval, the input is
saturated at ui(t) = 0 for all i, and because the glucose
consumption dynamic is slower than that of the desired
trajectory yd(t), it is not possible to reduce this error.

It has already been demonstrated that a substrate
or product regulation policy at a given optimal setpoint
yields to an exponential evolution of the corresponding
optimal feed flow rate (Lee et al., 1999; Leonard
et al., 1999). This is confirmed by the exponential
profile of u(t) as shown in Fig. 2. It is important to
point out that the exact exponential function of the
process input is a priori unknown and that it took
about 15 iterations for the conventional ILC scheme
to achieve convergence. However, for practical and
economical purposes, the sampling period of T = 1 h
is not acceptable, since it corresponds to an excessive
number of off-line glucose laboratory analysis, i.e.
N = 200 for each single operation i. Hence, the fact
of increasing period T is imposed by the important
economic aspect of minimizing N –and consequently,
the operator availability– in a real-life implementation.

The same ILC algorithm based on ZOH function
is used in a new simulation (see Fig. 3) with

an increased sampling period T = 25 h and a
corresponding reduced number of off-line analysis, i.e.
N = 8. As shown in this figure, the conventional
ILC procedure has not produced acceptable control
performances since the inherent zero-order hold input
policy does not allow continuity in the input profile,
and consequently nor in the output profile. This
undesired behavior is reflected by the convergence of
the error ‖ei(t)‖2 to a bigger value than that obtained
in the case of N = 200. This occurrence can easily
be explained by the fact that the substrate control
goal for fedbatch fermentation processes consists in
keeping an inherently unstable type of behavior under
control (Bastin and Dochain, 1990; Van Impe and
Bastin, 1995), which in turn results in time-varying
profile of the actual process variables. Hence, freezing
the control input during a too large period of time
comes against its natural time-varying behavior and
could lead, as shown in these simulation results, to
misleading control trajectories.

4.3 Input interpolation

In this context, the idea of using some interpolation
method in order to reconstruct a continuous input
profile between sampling points arises to circumvent
the convergence problems due to the zero-order hold
input policy in conventional ILC updating laws. In
Fig. 3, simulation results are illustrated for linear and
cubic-polynomial piecewise continuous function for
input interpolation.
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Fig. 3: Conventional PD-Type ILC for N = 8; input, output error and ‖ei(t)‖2 using ZOH, linear and cubic input interpolation.

Output convergence to the desired glucose reference
model is observed after approximately 7-8 iterations.
Improved transient behavior and convergence rate are
obtained in both cases, while the difference between
the two algorithm performances is not significant.
However, the final value of ‖ei(t)‖2 is still bigger than
the value obtained in the case of conventional ILC
algorithm with N = 200 (see Fig. 2). The increased
error is generated by the small overshoot observed
at t ' 35 h in Fig. 3, which in turn is due to the
time localization mismatch between the first sampling
period t = 25 h and the time the feeding pump is
supposed to begin to actuate, i.e. t1 ' 30 h. Although
this kind of behavior may be avoided by adjusting the
measurement period to an estimated value of t1, this
solution comes against the assumption of no a priori
process knowledge context of this study. Furthermore,
since the initial lag phase t1 is directly correlated to
the initial concentrations of the main LAFP process
variables, its pre-estimation would be necessary each
time the operating initial conditions are changed.

4.4 ILC with input parameterization

Following the idea of dynamic fitting (Chen et al.,
1997; Xu et al., 1999), instead of solving a functional
minimization problem according to conventional ILC
approach, one may parameterize the control ui(t) as:

ui(t) = Φ (Γi(t), t) (9)

where Φ(.) ∈ R is a properly chosen basis function
and Γi(t) ∈ Rp an input parameter vector. The
remaining task consists then in estimating the control
parameters through an iterative learning law. At this
stage, and considering the specific case of fedbatch
fermentation processes, the main difficulty remains
in an appropriate choice of the parameterized input
function Φ(.). Taking into account the previously
mentioned fact that a substrate regulation strategy at
the optimal setpoint y∗ in fedbatch mode results in an
a priori unknown exponential evolution of the feed
flow rate, let the input function ui(t) have the following
delayed piecewise continuous exponential form:

ui(t) =

{
uk

i eak
i (t−tk) tk < t ≤ tk+1 k = 1, . . . ,N − 1

0 0 ≤ t ≤ t1
(10)

where uk
i , ui(tk). The input parameter vector

Γi ,
[
t1, u1

i , a
1
i , . . . , a

N−1
i

]′
∈ RN+1 is updated at each

iteration i through the following first-order iterative
learning law:

Γi+1(tk) = Γi(tk) + L1ei(tk) k = 1, . . . ,N (11)

where L1 is the learning gain vector to be designed. In
order to be able to compare the efficiency of this new
ILC control law and that of the conventional scheme
of Eq. (8), the same LAFP initial conditions and the
case N = 8 are assumed.
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Fig. 4: Input parameterized ILC for N = 8; input, output error, ‖ei(t)‖2 and input parameters evolution.

The parameterized ILC control algorithm, with L1 =

[−0.5, 0.01, 0.015I7]
′

where I7 is the 1 × 7 unit vector,
demonstrates a perfect tracking after 6-7 iterations as
shown in Fig. 4. It can also be observed that the
input parameters converge to their corresponding final
optimal value with the same rate.

It is important to notice that, when compared
to the results of the conventional PD-type ILC
scheme, besides the improvement of the iterative
learning convergence rate, the transient behavior of
the output tracking has also been improved. One
of the important feature of the control law given
by Eq. (10) is that the error due to an inaccurate
selection of the sampling period (as illustrated in the
previous example) is eliminated by considering the
first sampling time t1 as an additional parameter to
be iteratively estimated. Finally, the algorithm still
exhibits the important feature of ILC approaches,
which is the possibility of using a reduced number
of off-line measurements, i.e. only 8 samples for a
200 hours LAFP operating cycle. It is interesting to
note how all the ak

i (k = 1, . . . ,N − 1) parameters in
Fig. 4 converge to the same constant optimal value
a∗ ' 0.01. This convergence characteristic confirms
that the learning process of the ILC algorithm was
correct. Taking this occurrence under consideration,
the following continuous exponential function for the
parameterization of the ILC control law is proposed:

ui(t) =

{
u1

i ea1
i (t−t1) t ≥ t1

0 0 ≤ t < t1
(12)

where u1
i , ui(t1). Only three input parameters

are needed to be estimated via iterative learning,

i.e. Γi ,
[
t1, u1

i , a
1
i

]′
. Consequently, since the

choice of a control law of the form of Eq. (12)
implies that N = 2, only two off-line measurements
are needed for its implementation. It is shown in
Fig. 5 that the parameterized ILC control law, with
L1 = [−0.5, 0.01, 0.015]

′

, is able to achieve acceptable
convergence rate. For instance, the subfigures
corresponding to the evolution of the input parameters
versus the number of iterations illustrate how the
corresponding initial values are close to zero and how
they converge quite rapidly, i.e. after only about 5-6
iterations, to their unknown optimal values. Although
convergence rate has been improved when compared
to the results of the conventional PD-type ILC, the
main advantage of this approach is that the number
of off-line measurements has been drastically reduced.
This characteristic is obviously of great importance
from the practical and economical point of view
when controlling fedbatch fermentation processes. It
should be finally mentioned that cell growth control
by using an exponential feeding pattern has allowed
productivity and yield to be increased in several other
biotechnological processes (Ho et al., 1999; d’Anjou
and Daugulis, 2000).
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Fig. 5: Input parameterized ILC for N = 2; input, output error, ‖ei(t)‖2 and input parameters evolution.

Fig. 6: Robustness test of the input parameterized ILC for N = 2; input, output error, ‖ei(t)‖2 and input parameters evolution.

Remark. The boundedness of trajectories during
each iteration is guaranteed theoretically because only
a finite time interval is concerned in every iteration
(Chen and Wen, 1999). However, in practice, it may
happen that the tracking errors in between sampling
points are large while maintaining a good pointwise
tracking, as illustrated in Fig. 2 and Fig. 3. In the case
of Eq. (12), the boundedness of the error trajectories
with only 2 sampling points is still guaranteed because
the exponential input profile is sufficiently close to that

of the optimal one.

To demonstrate practical robustness of the
proposed scheme, a simulation with non-repetitive
parametric disturbances (µm is set to 0.55 after 9
iterations) and 10% additive zero-mean signal noise
for more realistic measurement is run as shown in
Fig. 6. Significant robustness of the ILC controller
is demonstrated by its efficiency of rejecting the
signal noise effects and its capacity of absorbing
the parametric perturbation after only 3-4 iterations.
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These case study results show the applicability of the
proposed approach. A rigorous convergence proof of
the algorithm should be carried on by combining the
convergence results based on dynamical fitting (Chen
et al., 1997; Xu et al., 1999) together with those of
Chien (2000) for ILC of nonlinear sampled systems.

5 Conclusions

Based on the idea of dynamic fitting, a novel type
of ILC strategy using an appropriate exponential
parameterization of the input profile, is designed
and compared to a conventional ILC PD-type one.
The simulation results, using the case study of a
fedbatch lactic acid fermentation process without loss
of generality, show that improved ILC convergence
rate and transient behavior are obtained. Furthermore,
only two off-line measurements are necessary for its
implementation, showing the practical and economical
advantage of this ILC strategy upon standard ones.

Nomenclature
c biomass concentration, g L−1

ei(t) output tracking error at iteration i, g
L−1

‖ei(t)‖2 2-norm of the output error at instant t
H(q) linear filter of ILC law
i number of the ILC iteration
kd constant ILC learning gain
kp constant ILC learning gain
k0 cell death constant, h−1

Kpm inhibition constant, g L−1

Ks affinity constant (anabolism), g L−1

Ksm affinity constant (catabolism), g L−1

Kαp saturation constant
Kαs saturation constant
Kαµ saturation constant
L1 ILC learning gain vector
L(q) linear filter of ILC law
N number of off-line measurements
p product (lactic acid) concentration, g

L−1

pc lactic acid tolerance concentration, g
L−1

q time-delay operator
s substrate (glucose) concentration, g

L−1

sin influent substrate concentration, g L−1

t time, h
tk time at sampling period kT , h

T sampling period, h
u feed flow rate, L h−1

v working volume, L
Y yield coefficient, g g−1

yd(t) glucose desired output trajectory, g
L−1

y∗ glucose optimal setpoint, g L−1

Greek symbols
α0 minimal growth factor
β production uncoupling constant, g L−1 h−1

δ production coupling constant, g L−1

∆t time interval, h
Γi input parameter vector
µm maximum specific growth rate, h−1

Φ ILC basis function
ϕc specific growth rate, h−1

ϕp specific production rate, h−1

ϕs specific consumption rate, h−1

Θ kinetic parameter vector
Ξ process variable vector, g l−1
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