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D.F., 04430, México.
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Abstract
The stabilization problem of third-order, time-delay unstable linear systems is analyzed. The systems under
consideration have one unstable and two stable poles, which may be complex conjugate. Necessary and sufficient
conditions to guarantee the stability of the closed loop system by means of a static output feedback are provided.
Using such conditions, a predictor scheme that improves the transient system performance is proposed. To illustrate
the application of the proposed strategy, it is applied to an unstable continuously stirred tank reactor model.
Simulation results are presented.
Keywords: delay, complex conjugate poles, predictor, stabilization.

Resumen
Este trabajo considera el problema de la estabilización de sistemas lineales con tiempo de retardo de tercer orden,
con un polo inestable y dos estables, los cuales pueden ser complejos conjugados. Se presentan las condiciones
necesarias y suficientes para asegurar la estabilidad del sistema en lazo cerrado por medio de una retroalimentación
estática de la salida. Asimismo, usando el resultado anterior se propone un esquema predictor el cual mejora el
desempeño transitorio del sistema. Finalmente, el desempeño de la estrategia de control propuesta es evaluado
mediante su aplicación en simulación numérica a un reactor de tanque continuamente agitado inestable.
Palabras clave: retardo, polos complejos conjugados, predictor y estabilización.

1 Introduction

Delayed systems, also termed dead-time systems,
occur in most of the industrial processes (Pierre,
2003). Time delays are present in systems where some
kind of mass or energy is transported, for example
in distillation columns, heat exchange processes, etc.
Sometimes, delays arise due to the own system
design, for example due to computational cost of the
control algorithm, remote control and communication
networks in distributed systems, etc. However, most of
the time, delays are introduced by the sensors and/or
actuators devices (Liu et al., 2005). Particularly,
unstable processes with time delay are common in

chemical and industrial processes, like liquid storage
tanks (Liu et al., 2005), continuously stirred tank
reactor (CSTR) (Qing-Chang, 2006), etc.

Delays are perhaps one of the main causes of
instability and poor performance, producing in general
unwanted behavior in dynamical systems. Therefore,
stability analysis and controller design of delayed
systems deserve special attention. As a consequence,
there is great motivation for studying the effects that
delays cause in dynamic systems behavior. From
the control point of view, time delays introduce
complications that must be overcome by designing
control strategies. Such strategies must provide both
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acceptable performance and stability of closed-loop
system.

The simplest approach is to ignore the delay term,
i.e., the compensator is designed for the delay-free
processes and applied to the original delayed system.
Clearly, this method only works for processes with a
sufficiently small delay. Other approach consists on
the approximation of the delay operator by means of
Taylor or Pade series expansions that leads to non-
minimum-phase models with rational transfer function
representation (Munz et al., 2009). Another solution
to control delayed systems is the use of Proportional-
Integral (PI) and Proportional- Integral-Derivative
(PID) controllers. An example of this technique is
the work presented by Nesimioglu and Soylemez,
(2010). In this work a first order unstable process with
time delay is analyzed, the stability analysis based on
Walton and Marshall (1987) is used to calculate all
stabilizing values of proportional controllers for those
systems. A complete set of PID-controllers for time-
delay systems is analyzed in Silva and Bhattacharyya
(2005), where different bounds for the stabilization of
first-order, dead-time systems were provided.

The effect of time delay can also be compensated
by trying to remove the exponential term from
the characteristic equation of the process. This
strategy tries to eliminate the time delay effects by
means of schemes intended to predict the effects of
current inputs in future outputs. This technique was
introduced by Smith (1957) and the proposed time
delay compensator is known as the Smith Predictor
(SP). Such technique does not have a stabilization step,
this restricts its application to open-loop stable plants.
To deal with this disadvantage, some modifications
of the SP original structure have been proposed (see
for instance (Seshagiri et al., 2007) and (Kawnish and
Shoukat, 2012). In Rao and Chidambaram (2006), it
was presented an efficient modification to the Smith
predictor to control unstable first order systems with
time delay, using the direct synthesis method. In
this manner, a lead-lag compensator is designed to
control the open-loop, second-order unstable delayed
process. With a different perspective, Normey-Rico
and Camacho (2008, 2009), propose a modification to
the original Smith Structure in order to deal with first-
order unstable delayed systems. Other studies have
been reported, such as that described in (Xian et al.,
2005), which proposes a control scheme with two-
degree-of-freedom for enhanced control of unstable
delay processes.

Using a different approach, some recent works
have been devoted to the analysis of stability

and stabilization of systems with delay based on
approaches of Lyapunov-Krasovskii and Lyapunov-
Razumikhin. These results are expressed in terms
of algebraic Riccati equations, (Kolmanovskii and
Richard, 1999); Qing-Chang, 2006), etc., or linear
matrix inequalities, (Fridman and Shaked, 2002; Lee
et al., 2004; Mahmoud and Al-Rayyah, 2009), etc.
In Michiels et al. (2002), a numerical method is
employed to shift the unstable eigenvalues to the left
half plane by static state feedback, applying small
changes to the feedback gain. The same approach
is implemented by considering an observer-based
strategy; however, stability conditions with respect to
time-delay and time constant of the process are not
provided.

In del Muro et al. (2009), necessary and sufficient
conditions for the stabilization of linear systems by
static output feedback with one unstable pole, n real
stable poles and time delay τ, are provided. In See
et al. (2010), the problem is also solved by PI-PID
controllers.

This work is aimed to give a further step in this
topic. Particularly, the static feedback stabilization
problem of delayed system with one unstable and two
stable poles, which may be complex conjugate, is
addressed. Necessary and sufficient conditions for this
problem are derived. Once the stabilization conditions
obtained, a predictor-controller scheme to improve its
transient response is designed. Transient response
performance has a core importance in chemical
processes. The proposed scheme is then applied
to an unstable Continuously Stirred Tank Reactor to
give an example of the control strategy in a practical
framework.

The paper is organized as follows; Section 2
introduces the problem statement. In Section 3
the proposed control strategy and the necessary and
sufficient conditions for the existence of the stabilizing
control structure are derived. In Section 4 the example
is presented. Finally, some conclusions are given in
the last section.

2 Problem statement
Consider the following class of Linear Time Invariant
systems (LTI), a Single-Input Single-Output (SISO)
with delay in the input-output path,

Y(s)
U(s)

=
N(s)
D(s)

e−τs = G(s)e−τs, (1)

where,
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• U(s) is the input signal,

• Y(s) is the output signal,

• τ ≥ 0 is the time delay,

• N(s) and D(s) are polynomials represented in
the complex variable ‘s’,

• G(s) is the delay-free transfer function.

Applying an output feedback control strategy of the
form,

U(s) = [R(s) − Y(s)]Q(s), (2)

to (1) the transfer function Y(s)/R(s) can be obtained
yielding

Y(s)
R(s)

=
Q(s)G(s)e−τs

1 + Q(s)G(s)e−τs , (3)

Note that the exponential term e−τs located at the
denominator of this transfer function, leads to a system
with an infinite number of poles. Hence, any closed-
loop stability properties must be carefully stated.

Hereafter the third-order delayed system with one
unstable and two (possibly complex) stable poles,
characterized by

Y(s)
U(s)

=
α

(s − a)(s2 − 2ζ omegans + ω2
n)

e−τs, (4)

is considered. The parameters ζ and ωn are the
damping relation and the undamped natural frequency
respectively. Note that when 0 < ζ < 1, a couple of
complex conjugate poles is present in the system.

2.1 Preliminary results

This Section presents some preliminary results useful
to obtain the main result of the paper. Consider the
unstable first-order delayed system given by,

Y(s)
U(s)

=
α

(s − a)
e−τs, (5)

with a > 0. Consider a proportional output feedback,

U(s) = R(s) − kY(s). (6)

If the time delay τ is small compared to the unstable
time constant 1/a, then a gain k exists such that the
closed loop system, Eq. (7), is stable.

Y(s)
R(s)

=
αe−τs

s − a + kαe−τs . (7)

This idea may formally be stated as:

Lemma 1 Considering the delayed system (5) and the
proportional output feedback (6), then, a proportional
gain k exists such that the closed loop system (7) is
stable if and only if

τ <
1
a

The proof of Lemma 1 can be easily obtained
by considering different approaches, such as the
ones given by (Niculescu, 2001) and (Silva and
Bhattacharyya, 2005). A simple proof based on a
discrete time approach is shown in (Márquez et al.,
2010).

3 Proposed control strategy
This section presents the necessary and sufficient
conditions to stabilize a third-order delayed system (4)
by static output feedback. In order to improve the
transient response, an observer scheme is proposed.

3.1 Stabilizing conditions

Lemma 2 Consider the class of third-order
characterized by (4), with the static output feedback

U(s) = R(s) − kY(s), (8)

where R(s) is the new reference input.
A gain k exists such that the closed loop system (4)

and (8),

Y(s)
R(s)

=
αe−τs

(s − a)(s2 + 2ζωns + ω2
n) + kαe−τs (9)

is stable if and only if

τ <
1
a
−

2ζ
ωn
.

Proof The proof is made by using a frequency domain
analysis. From the Nyquist stability criteria, the
system is stable if N + P = 0, where P is the number of
poles in the right half plane ‘s’ and N is the number of
clockwise rotations to the (-1,0) point. N is negative if
rotations are counterclockwise in the Nyquist diagram.

First, let us to analyze the first order unstable
delayed system given by (5). Note that in this case
P = 1, hence there exists a gain k that stabilizes the
system if N = −1, i.e., if a there is a counterclockwise
rotation to the point (-1,0).
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Fig. 1. Nyquist diagram when β grows.

Considering a frequency analysis, the phase
expression in the frequency domain ω for (5) is given
by,

〈G( jω)〉 = −

(
180o − tan−1

(
ω

a

))
− ωτ.

For this reason, condition τ < 1/a is equivalent
to say that 〈G( jω)〉 = −180o when ω ≈ 0, i.e. the
Nyquist diagram starts (for frequencies near to zero)
with an angle greater than −180o. This means that
there is a counterclockwise rotation to the point (-1,0).
If the point (-1,0) is outside the loop, this can be fixed
by adjusting the k value.

Let us now to consider the system (4). The phase
expression in the frequency domain ω is given by

〈G( jω)〉 = −

(
180o − tan−1

(
ω

a

))
−ωτ−tan−1

 2ζ
(
ω
ωn

)
1 −

(
ω
ωn

)2

 .
Define β = tan−1

(
2ζ

(
ω
ωn

)
1−

(
ω
ωn

)2

)
. Since the Nyquist

condition is the same (a counterclockwise rotation to
the point -1), if the condition τ < 1/a is satisfied
and β is small enough, then a gain k exists that
stabilizes the system. As the parameter β grows,
the loop that forms the counterclockwise rotation to

the point (-1,0) decreases to extinction (the Nyquist
diagram then starts with angle smaller than -180o) as
it is illustrated in Fig. 1. Considering that for small
frequencies tan−1(ω) ≈ ω, and taking into account that
〈G( jω)〉 − 180o, it can be concluded that solving for τ,
the stability condition for the system (4) is

τ <
1
a
−

2ζ
ωn
.

The following corollary provides a useful procedure
to compute the parameter k involved in the control
scheme.

Corollary 1 Consider the system (4). Suppose there
exists a gain k such that the corresponding closed loop
systems is stable, i.e., the condition τ < 1/a − 2ζ/ωn

holds. Then the family of k stabilizing the closed loop
system is given by

k1(ω(c1)) < k < k2(ω(c2)),

where

k1,2(ωc) =

√
(ω2

c + a2)(ω4
c + 2ω2

nω
2
c(2ζ2 − 1) + ω4

n);

with ωc1 = 0 and ωc2 satisfying,

tan−1
(ωc2

a

)
− ωc2τ − tan−1

 2ζ
ωc2
ωn

1 −
(ωc2
ωn

)2

 = 0.
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Proof Assuming that τ < 1
a −

2ζ
ωn

, and taking into
account that the magnitude expression is,

MG( jω) = k
1√

(ω2
c + a2)(ω4

c + 2ω2
nω

2
c(2ζ2 − 1) + ω4

n)
,

Note that the magnitude decreases monotonically from
k to 0. Hence, the phase will first increase from −180o

and then it will decrease back to −180o. This implies
that the phase intersects the negative real axis, i.e.
〈G( jω)〉 = −180o, for some positive frequency. In
order to have a counterclockwise rotation of (-1,0), this
intersection should lie between -1 and 0, that is, the
range of k must be between two values or equivalently
k1(ωc1 ) < k < k2(ωc2 ), with

k1(ωc1 ) =

√
(ω2

c1
+ a2)(ω4

c1
+ 2ω2

nω
2
c1

(2ζ2 − 1) + ω4
n),

with the crossover frequency ωc1 = 0, and

k2(ωc2 ) =

√
(ω2

c2
+ a2)(ω4

c2
+ 2ω2

nω
2
c2

(2ζ2 − 1) + ω4
n),

ωc2 satisfying

tan−1
(ωc2

a

)
− ωc2τ − tan−1

 2ζ
(ωc2
ωn

)
1 −

(ωc2
ωn

)2

 .

3.2 Conditions for the existence of the
predictor

In many practical applications, is not enough to
apply a static output feedback, because the achieved
performance is very poor. In particular it may be
interesting to obtain a system with a fast settling time
with no oscillations even if the open loop system
has complex conjugate poles. For that reason the
predictor-controller scheme depicted in Fig. 2 is
proposed.

Consider the third order delayed system (4).
A state space representation, controllable and
observable, is given by:

ẋ = Ax(t) + Bu(t)
y(t + τ) = Cx(t).

(10)

Lemma 3 Consider the predictor scheme shown in
Fig. 2. There exists a gain k such that limt→∞[x̂(t) −
x(t)] = 0 if and only if τ < 1/a − (2ζ)/ωn.

Fig. 2. Predictor-controller scheme.

Proof For convenience, this demonstration is
performed in state space. Consider the predictor
shown in Fig. 2, from (4) a controllable an observable
state space representation can be obtained as,

ẋ = Ax(t) + Bu(t)
y(t) = Cx(t − τ).

(11)

When a static output feedback k is applied the system
(11) becomes

ẋ = Ax(t) + Bu(t) − BkCx(t − τ). (12)

According to Lemma 2, the system can be stabilized
if and only if τ < 1/a − 2ζ/ωn. Consider now the
predictor shown in Fig. 2, then the system dynamics
can be described as follows:[

ẋ (t)
˙̂x (t)

]
=

[
A 0
0 A

] [
x (t)
x̂ (t)

]

+

[
0 0

Bk −Bk

] [
x (t − τ)
x̂ (t − τ)

]
+

[
B
B

]
u (t) (13)[

y (t)
ŷ (t)

]
=

[
C 0
0 C

] [
x (t − τ)
x̂ (t − τ)

]
,

where x̂(t) is the estimate of x(t). Define the prediction
error as ex(t) = x̂(t) − x(t). Therefore, it is possible to
describe the behavior of the error signal as,

ėx(t) = ˙̂x(t)−ẋ(t) = A(x̂(t)−x(t))−BkC(x̂(t−τ)−x(t−τ)).
(14)

The error dynamics results:

ėx(t) = Aex(t) − BkCex(t − τ). (15)

Note that error dynamics given by (15) is the same
dynamics that occurs in the system predictor given by
(12). Hence there exist a gain k such that limt→∞[x̂(t)−
x(t)] = 0 if and only if τ < 1/a − 2ζ/ωn.
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3.3 Predictor-controller scheme

Considering the control scheme shown in Fig. 2, and
the control action given by

u(t) = r(t) − Fx̂(t).

Based on the previous Lemmas, the following
Theorem can be stated without needing further proof.

Theorem 1 There exist gains k and F such that the
Predictor-Controller scheme shown in Fig. 2 is stable
if and only if τ < 1/a − 2ζ/ωn.

Note 1 Since the system is controllable, F can be
selected such that relocates the poles of the original
system in positions where the stability is preserved,
ensuring adequate performance.

Note 2 Another way of presenting the main result of
this work, is to see the second-order subsystem as a
complex conjugate form, that is,

ω2
n

s2 + 2ζωns + ω2
n

=
1

(s + b + jbi)(s + b − jbi)
,

where b is the real part and bi is the imaginary part of
complex conjugate poles. Then, the system (4) may be
rewritten as,

Y(s)
U(s)

=
α

(s − a)(s + b + jbi)(s + b − jbi)
e−τs.

Applying a static output feedback, the closed-loop
system becomes,

Y(s)
R(s)

=
αe−τs

(s − a)(s + b + jbi)(s + b − jbi) + kαe−τs .

Then, there exists k such that the closed loop system is
stable if and only if

τ <
1
a
−

2b
b2 − b2

i

,

where ζωn = b and ω2
n = b2 + b2

i .
Finally, the range of gains for k1(ωc1 ) < k <

k2(ωc2 ) is given by,

k1(ωc1 ) =

√
(ω2

c1
+ a2)(ω4

c1
+ 2ω2

c1
(2b2 − b2

i ) + (b2 + b2
i )2),

and

k2(ωc2 ) =

√
(ω2

c2
+ a2)(ω4

c2
+ 2ω2

c2
(2b2 − b2

i ) + (b2 + b2
i )2),

Fig. 3. Unstable Continuously Stirred Tank Reactor
(CSTR).

4 Example: Application to an
unstable continuously stirred
tank reactor (CSTR) by
numerical simulation

In this section the proposed control strategy is applied
to stabilize a chemical reactor system. Specifically,
a Continuously Stirred Tank Reactor (CSTR) is
considered. The CSTRs are widely used in the
chemical process industry. Common examples where
this type of reactor is used are the polymerization for
the production of plastics and paints, the production
of sodium acetate for the formation of soaps, among
others.

In most industrial processes, there exist factors that
might affect the system performance. For instance,
the time delay to take a measurement of temperature
or concentration of the reactant in the CSTR. In
particular, in this example the time delay is presented
in measuring the concentration of reactant A.

The purpose of measuring the concentration in the
reactant A is to manipulate the speed of the chemical
reaction and, thereby, improve the selectivity of the
reaction system.

The following example has been taken from
Bequette (2003). This model is particularly applied
to the chemical process of a Propylene Glycol reactor
system, and a general description of the mathematical
model is presented below.

In the CSTR, an exothermic reaction occurs, A →
B. To remove the reaction heat, the reactor is
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Hernández-Pérez et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 12, No. 2 (2013) 351-360

surrounded by a jacket (coolant jacket) through which
flows a coolant. Often, the heat transfer fluid is
pumped through agitation nozzles that circulate the
fluid through the jacket at high velocity, as it is shown
in Fig. 3.

Preliminary considerations for modeling:

• Heat losses are negligible.

• The thermodynamic properties, densities and
heat capacities of the reactants and the products
are constants.

• Perfect blend in Reactor.

• Uniform temperatures in both chambers.

Given all these considerations, the variables and
parameters are now defined for the plant or process
under study.

Independent variables (input variables):

• Product flow A: F.

• Flow cooling liquid (reactor jacket): F j f .

Dependent variables (output variables):

• Concentration of the product A: cA.

• Temperature in the Reactor: T .

• Temperature in the cooling liquid (reactor
jacket): T j.

Measurable disturbances:

• A product concentration A in the reactor input:
CA f .

• Input temperature product A: T f

System parameters are listed in Table 1.
Values at the operating point are shown in Table 2.
Differential equations of the process shown in Fig.

3 are characterized as follows:

Table 1: System parameters of CSTR

Description Variables Values Units

Volume of the reactor V 85 ft3

Activation energy −∆E 32,400 Btu/lbmol
Heat transfer coefficient U 75 Btu/hroF

Heat of Reaction −∆H 39,000 Btu/lbmol PO
Heat transfer area A 88 ft2

Frequency factor k0 16.96 ×1012 hr−1

Ideal gas constant R 1.987 Btu/lbmoloF
Volume cooling liquid in the chamber V j 21.25 ft3

Heat capacity on reactor with density of the reagent pcp 53.25 Btu/ft3oF
Density of the cooling liquid with heat capacity of the cooling liquid p− jc−p j 55.6 Btu/ft3oF

Table 2: Values at the operating point of CSTR

Description Variables Values Units

A product concentration A in the reactor input CA f 0.132 lbmol/ft3

Concentration of the product A CA 0.066 lbmol/ft3

Product Flow A F 340 ft3/hr
Flow cooling liquid (reactor jacket) F j f 28.75 ft3/hr

Temperature in the reactor T 101.1 oF
Temperature in the cooling liquid (reactor jacket) T j 55 oF

Input temperature product A T j 60 oF
Cooling liquid temperature at the input T j f 50 oF
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1. Balance of the mass on component A is

V
dCA

dt
= FCA f − FCA − VrA,

with
rA = k0e−

∆E
RT CA,

where rA is the rate of reaction per unit volume,
k0 is the frequency factor, ∆E is the activation
energy and R is the ideal gas constant, such that,

dCA

dt
=

F
V

(CA f −CA) − k0e−
∆E
RT CA.

2. Energy balance in the reactor,

dT
dt

=
F
V

(T f−T )+
−∆H
RT

k0e−
∆E
RT CA−

UA
V pcp

(T−T j).

3. Energy balance in the cooling liquid,

dT j

dt
=

F j f

V j
(T j f − T j) +

UA
V j p jcp j

(T − T j).

To linearize the differential equations, a Taylor
series approximation, or a Jacobian matrix linear
transformation around the operating point of Table 2
may be used (Bequette, 2003).

Let consider the jacket temperature as the
manipulated variable and the concentration of the
CSTR as the controlled variable. Linearization around
this steady-state operating point yields the following
transfer function model, assuming a measurement time
delay of 0.25 hr.

CA(s)
T j f (s)

=
0.0646

(s − 1.1772)(s2 + 10.51s + 29.26)
e−.25s.

For the current example, the parameters of the system
are a = 1.1772, ζ = 0.97, ωn = 5.4 and τ = 0.25.

Since 0.25< 1/1.1772 − (2 ∗ 0.97)/5.4 = 0.49,
the stability condition given in Theorem 1 is satisfied,
such that this system may be stabilized by the
predictor-controller scheme shown in Fig 2.

According to Corollary 1 the range of values for
the stabilizing parameter k is,

531.915 < k < 925.926.

Selecting k = 600, the corresponding Nyquist diagram
is shown in Fig. 4.

Fig. 4. Nyquist diagram

Fig. 5. Error signal ŷ(t) − y(t).

Fig. 6. Control performance of CSTR.

Using the predictor-controller scheme proposed in
this work, the output error signal limt→∞[ŷ(t) − y(t)] =

0 as shown in Fig. 5.
Hence this system can be stabilized and the poles

of the system can be relocated. The gain vector F
that relocates the poles at {-1,-3,-5} is F=[-3.33 -5.88
40.43].

Fig. 6 illustrates the simulated performance of
the observer-based controller for a unit step reference.
The continuous line denotes the performance of the
nominal system.
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Fig. 7. Control performance of CSTR.

The dashed line shows the performance for the system
with an uncertainty of 12% in the delay operator.

Note that the system preserves the stability despite
having some fluctuations in the response, caused by
variations in parameters up to 16% of its nominal value
(see Fig. 6).

The control structure can be complemented with
a more sophisticated strategy, like a Proportional-
Integral-Derivative (PID) action, in order to obtain
step disturbance rejection and step reference tracking.
Following this approach, the tuning of the PID
controller of the reactor was based in the Ziegler and
Nichols tuning rules, ignoring the delay term. The
parameters are set to kp = 108, ki = 0.3 and kd = 0.8.

In order to evaluate the performance of the
proposed methodology, the results were compared
with a PID controller designed with the methodology
proposed by Lee Chek See (See et al., 2010).
According to this methodology, the parameters are:
kp = 69, ki =0.3973 and kd = 0.4.

In Fig. 7, the response of the closed loop system
for the two control strategies are shown. A unit step
and a step disturbance of magnitude -2 units, acting at
the instant of 50 hours are the system inputs.

It can be observed from Fig. 7 that a better
performance of the controller proposed in this paper
is observed when compared with (See et al., 2010).

Conclusions
Unstable systems with time delay are commonly found
in industrial processes, where time delay usually
adds complications for its study, and makes the
system stabilization a challenge. In this paper are
presented the necessary and sufficient conditions for
the stabilization, by static output feedback, of a

class of unstable third-order systems with possible
complex conjugate poles and time delay. A predictor-
controller scheme to stabilize the system was proposed
and a better performance was achieved. Explicit
necessary and sufficient conditions were stated for
the existence of the proposed scheme. The control
strategy presented in this work was shown to be
simple and easy to implement, providing adequate
performance despite parameter variations and nonzero
initial conditions. An Unstable Continuously Stirred
Tank Reactor was used to verify the performance of
the proposed strategy using numerical simulation. In
this example, a PID controller was added to illustrate
that the proposed control technique allows step
reference tracking and rejection of step disturbances.
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