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3School of Informatic Engineering- Universidad Católica de Temuco Casilla 15D- Temuco-Chile

Received December 3, 2012; Accepted October 20, 2013

Abstract
The oil-water flow in a heterogeneous porous medium was studied numerically, with special emphasis on the
interface between two homogeneous layers of the porous matrix. The heterogeneity considered consists of a
discontinuous capillary pressure on the interface. The differential equation was solved using a fully implicit scheme
based on the upwind finite volume method. The unknown was the water saturation. This study evaluated the
impact of changes in: the porosity of the entire domain, the initial water saturation, the water injection rate, the
gravitational force, and the material grain size, on the water saturation at the interface. Experiments have improved
the understanding of hydrodynamics on the interface. A full characterization of the porous matrix is an essential
condition before defining conditions of oil extraction. The studied algorithm has great potential for use in earlier
stages of design and planning for oil extraction.

Keywords: discontinuous capillary, porous medium, interface, finite volume, oil-water flow.

Resumen
En este trabajo se estudió numéricamente el flujo agua-petróleo en una medio poroso heterogéneo, con énfasis

en la interface entre dos capas homogéneas de la matriz porosa. La heterogeneidad considerada consistió en una
función discontinua de capilaridad sobre la interface. La ecuación diferencial fue resuelta utilizando un esquema
tipo upwind completamente implı́cito basado en el método de volúmenes finitos. La incógnita principal fue la
saturación del agua. Se evaluó el impacto sobre la saturación de la interface de diversos parámetros tales como:
la porosidad, la saturación inicial de agua, la razón de inyección de agua, la fuerza gravitacional, y el tamaño del
grano del material. Se concluye que una completa caracterización de la matriz porosa, junto con una adecuada
combinación de parámetros de control y modelado, son condiciones fundamentales para definir condiciones de
extracción adecuadas. El algoritmo estudiado posee un gran potencial para ser utilizado en etapas tempranas de
diseño y planeación para la extracción del petróleo.

Palabras clave: capilaridad discontinua, medio poroso, interface, volúmenes finitos, flujo agua-petróleo.

1 Introduction

Mathematical model of immiscible two-phase flow in
porous media have been applied in the oil industry
to understand the movement of hydrocarbons in the
subsurface (Azis and Settari, 1979; Bear, 1988;
Bertsch et al., 2003; Salazar-Mendoza et al., 2004;

Gerritsen and Durlofsky, 2005; Amini and Schleiss,
2009; Kinjal et al., 2012). Other areas of application of
these models are environmental engineering (Helmig,
1997; Chen et al., 2006; Lee, 2010), mining (Cariaga
et al., 2005) and nuclear energy (Hérard and Hurisse,
2009).

Heterogeneous media with different types of rock
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significantly affect the flow of the oil, and therefore,
cause a decrease in the oil recovery factor. This
discontinuity of physical properties can lead to oil-
trapping phenomenon (Bertsch et al., 2003; Cancès,
2008; Cancès et al., 2009), which can be explained
by a discontinuous capillary pressure at the interface
separating the two homogeneous media. Indeed, if
the mean pore radius in one media is smaller than
that in the other, the oil phase must reach an entry
pressure so that the oil phase can enter the less
permeable media (Azis and Settari, 1979; Cancès
et al., 2009; Enchery et al., 2006). Schweizer
(2008) used the one-dimensional degenerate two-
phase flow equations as a model for the water-drive
process in oil recovery. Schweizer (2008) introduced
a free boundary problem that separated the critical
region with locally vanishing permeabilities from
a strictly parabolic region. Additionally, Schweizer
(2008) performed a rigorous derivation of the effective
conservation law. In Cancès (2009) buoyancy was
taken into account.

Laboratory-scale columns of porous material are
frequently used in the early stages of design, to
determine the numerical values of the parameters to
be used in later industrial-scale designs, particularly
in the oil industry and in the bioremediation of soils
contaminated with hydrocarbons. For this reason, the
simulations in this paper were performed in only one
spatial dimension (1D) (Jiménez-Islas et al., 2009).
A column of porous material, consisting of two
homogeneous media (each fully oil saturated) has
been considered; water was injected at a constant rate
at the upper column boundary, so as oil could flow
freely at the lower column boundary. Fig. 1 shows a
schematic pore-scale considering an average value of
porosity in the column where hierarchy of penetration
of pores by freely imbibing water, where usually the
narrowest pore is invaded first at a node of the network
and penetration into the large pores awaits complete
penetration of the narrowest pore. Initially, the entire
porous medium is partially saturated with oil. The
focus of this research is to improve our understanding
of the evolution water saturation on the interface.

The mathematical model is a continuity equation
for the water phase, coupled with Darcy’s law
(Bear, 1988). Cancès et al. (2009) introduced
a new mathematical formulation to establish the
discontinuity at the interface, which was more general
than the condition used by Enchery et al. (2006). The
interface condition applied in this work follows the
formulations of Enchery et al. (2006) and Cancès et
al. (2009), which are equivalent to extended capillary

pressure condition of van Duijn et al. (1995).
The oil-trapping phenomenon has been modeled

using several numerical methods (Cancès et al.,
2009; Enchery et al., 2006; Ersland et al., 1998;
Bastian and Helmig, 1999; Mikys̆ka et al., 2009).
Ern et al. (2010) designed and studied a sequential
discontinuous Galerkin method to approximate
two-phase immiscible incompressible flows in
heterogeneous porous media with discontinuous
capillary pressures. With realistic parameters they
consider a domain divided into five sub domains with
combination fine-coarse-fine-coarse-fine structure for
the porous media, but without sensitivity analysis.
Hoteit and Firoozabadi (2008) propose a consistent
formulation in which the total velocity was expressed
in terms of the wetting-phase potential gradient and
the capillary potential gradient. They combine the
mixed finite element and the discontinuous Galerkin
methods to solve the pressure equation and the
saturation equation. The simulations in Hoteit and
Firoozabadi (2008) show the significance of capillary
pressure contrast in heterogeneous media. In this
work, the numerical scheme is based on the 1D
upwind finite volume method (Eymard et al., 2000).
The numerical scheme is fully implicit in time, and the
damped inexact Newton method was applied as it was
used by Niessner et al. (2005). The continuous and
discrete formulations are well-posed (Cancès, 2008;
Cancès, 2009; Cancès et al., 2009; Cancès, 2010). The
discrete solution converges into the unique solution to
the continuous problem (Cancès, 2008; Cancès, 2009).
The computer code developed in this research assesses
the effect of the water saturation on the interface in
areas not considered by previous works. Under these
conditions, the following are simulated numerically:
the water saturation in the full domain and the water
saturation at the interface. Specifically, in present work
the impact on the water saturation, of changes in:
the porosity of the entire domain, the initial water
saturation, the water injection rate, the gravitational
force, and the material grain size, is evaluated.

2 Mathematical model

The heterogeneous porous column is denoted by the
mathematical domain Ω =]−1, 1[, which is considered
to consist of two homogeneous porous media, denoted
by Ω1 =] − 1, 0[ and Ω2 =]0, 1[, respectively, whereas
the interface separating the two homogeneous media
is denoted by Γ = {0}. It is assumed that the material
Ω1 =] − 1, 0[ is coarser, and the material Ω2 =
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]0, 1[ is finer. The maximum time recorded by the
simulations will be denoted by T > 0. An oil-water
flow is considered, where both phases are assumed to
be incompressible and immiscible. Additionally, both
porous materials are assumed to be inert to water and
oil. The conservation of each phase and the use of the
generalized Darcy’s law on each sub domain lead to
(x, t) ∈ Ωi × (0,T ); i = 1, 2:

φi
∂ui

∂t
+
∂

∂x

[
−µw,i(ui)

(
∂pw,i

∂x
− ρwg

)]
= 0 (1)

φi
∂(1 − ui)

∂t
+
∂

∂x

[
−µo,i(ui)

(
∂po,i

∂x
− ρog

)]
= 0 (2)

where, φi ∈ [0, 1] is the porosity of porous medium
Ωi , ui is the water saturation (and therefore (1 − ui)
is the oil saturation), µβ,i is the mobility of the phase
β = w, o, where w denotes water and o denotes oil,
pβ,i denotes the pressure of the phase β and ρβ denotes
its density, and g denotes the gravitational constant.
Additionally, the capillary pressure pc,i(u, i) is such
that pc,i(ui) = po,i − pw,i.

Adding Eqs. (1) and (2) shows that: ∂qi
∂x = 0 where

qi is the total flow-rate, which is defined as:

qi = −µw,i(ui)
(
∂pw,i

∂x
− ρwg

)
− µo,i(ui)

(
∂po,i

∂x
− ρog

)
(3)

Note that the Darcy’s law for fluid flow in
porous media vβ,i = −µβ,i(ui)

(
∂pβ,i
∂x − ρβg

)
with

β = w, o can be written as vw,i = qi fi(ui) −
∂ϕi(ui)
∂x − λi(ui)(ρo − ρw)g, for the water phase

case, where fi(ui) = µw,i(ui)/[µw,i(ui) + µo,i(ui)],
λi(ui) = µw,i(ui)µo,i(ui)/[µw,i(ui) + µo,i(ui)], and
ϕi(ui) = −

∫ ui

0 λi(a)p′c,i(a)da. In this work we suppose
that q = q1 = q2 , and q ≥ 0, that is, the fluids move
from x = −1 to x = 1. Therefore, an alternative version
of Eq. (1) is obtained for each of the subdomains
i = 1, 2:

φi
∂ui

∂t
+
∂

∂x

(
qi fi(ui) −

∂

∂x
ϕi(ui) − λi(ui)(ρo − ρw)g

)
= 0

(4)
Let us now focus on the transmission conditions
through the interface Γ. Let u0,1 denote the trace of u1
on Γ and let u0,2 denote the trace of u2 on Γ. Similarly,
and for β = w, o , the trace of pβ,1 on Γ will be denoted
as pβ,0,i.

As established by Enchery et al. (2006), the
pressure of phase β can be discontinuous through the
interface Γ in the case where this phase is missing in
the upstream side. This discontinuity can be written as:

µβ,1(u0,1)(pβ,0,1 − pβ,0,2)+ − µβ,2(u0,2)(pβ,0,2 − pβ,0,1)+

(5)
where y+ = max{y, 0}, with y denoting an arbitrary
real number. The conservation of each phase β = w, o,
leads to the continuity of the fluxes at Γ (Cancès, 2008;
Cancès et al., 2009; Enchery, 2006).

vβ(u0,1) · n1 = vβ(u0,2) · (−n2) (6)

where ni denotes the outward unit normal vector to
Γ. Finally, the boundary conditions are as follows: at
x = −1 the boundary is defined as a water injection
condition, that is:(

q f1 −
∂

∂x
ϕ1

)
(−1, t) = qw (7)

where 0 ≤ qw ≤ q. At x = 1 we choose to take:

∂

∂x
ϕ2(u2)(1, t) = 0 (8)

In conclusion of this section, the mathematical
model is given by the nonlinear differential equation
given by Eq. (4), conditions at the interface given by
the Eqs. (5) and (6), the boundary conditions given by
Eqs. (7) and (8), and the initial condition u0 = u(x, 0),
where the unknowns are ui , and u0,i, for i = 1, 2. Note
that this is an evolutionary problem with non-linear
convective and diffusive terms. The model assumes
that in the convective term, the total flow is known.
Additionally, the equation could become degenerate
(the diffusive term becomes zero) if u = 0.

3 Numerical model
The mathematical model was solved by the finite
volume method in 1D. Specifically, we used a
fully implicit scheme in time and an upwind type
approximation for the convective term. An implicit
scheme does not require a CFL (Courant, Friedrich,
Levy) condition. In the process of oil extraction the
spatial and temporal dimensions of the process are
very large, making it inadvisable to use numerical
schemes that have restrictions on the step sizes in
time and space, as with explicit schemes. The discrete
unknowns are also denoted as ui, and u0,i, for i = 1, 2.
Furthermore, to simplify the notation, we considered a
uniform spatial discretization. Let N,M ∈ {1, 2, 3, ...}
and n ∈ {0, 1, 2, ...,M} for which the spatial step 1
size is defined as δx = 1/N and the temporal size
step is defined as δt = T/M, tn = nT/M, x j = j/N,
j ∈ [−N,N], and x j+1/2 = ( j+1/2)/N , j ∈ [−N,N−1].
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With these elements, the discretization of Eq. (4) with
j ∈ [−N,N − 1], n ∈ [0,M − 1] is given by:

φi

un+1
j+1/2 − un

j+1/2

δt
δx + Fn+1

j+1 − Fn+1
j = 0 (9)

where Fn+1
j is an approximation of the average flow

through x j during the time interval ]tn, tn+1[ given by:

Fn+1
j :=qn+1 fi(un+1

j−1/2) −
ϕi(un+1

j+1/2) − ϕi(un+1
j−1/2)

δx
− λi(un+1

j−1/2)(ρo − ρw)g (10)

Note that in Eq. (10) the function fi is evaluated in
un+1

j−1/2 because we assume that q ≥ 0 and use an
upwind scheme for the convection. A second-order
scheme for the diffusive part is applied, whereas a first-
order scheme for the convection part is used. For an

arbitrary function z, the notation zn+1 := 1
δt

∫ tn+1

tn z(t)dt
is being used.

The discrete version of the boundary conditions (7)
and (8) is given by:

Fn+1
−N = qn+1

w (11)

Fn+1
N = qn+1 f2(un+1

N−1/2) − λi(un+1
N−1/2)(ρo − ρw)g (12)

The discrete version of the interface condition given in
Eq. (6) is given by:

qn+1 f1(un+1
−1/2) −

2(ϕ1(u0,1) − ϕ1(un+1
−1/2))

δx
− λ1(un+1

−1/2)(ρo − ρw)g = qn+1 f2(un+1
0,2 )

−
2(ϕ2(un+1

1/2 ) − ϕ2(un+1
0,2 ))

δx
− λ2(un+1

0,2 )(ρo − ρw)g (13)

which similarly defines the discrete version of the
interface condition given in Eq. (5). Note that in Eq.
(13) the function f1 is evaluated in un+1

−1/2 and f2 in un+1
0,2 ,

because we assume that q ≥ 0 and an upwind scheme
for the convection is applied.

The discrete interface unknowns u0,1 and u0,2 are
both defined on the interface Γ. One of the primary
objectives of this study is to simulate both values, i.e.,
to characterize the evolution of the water saturation at
the interface. The nonlinear algebraic system, formed
by Eqs. (9)-(13), was solved by the damped inexact
Newton-Raphson method as shown in Niessner et al.
(2005). An adaptive selection was applied regarding
the time step δt.

4 Results and discussion
The water is injected at the upper boundary x = −1
whereas both phases can flow freely at the lower
boundary x = 1 (Fig. 1). Eqs. (4)-(8) were reduced
to a non-dimensional form. The porosity and the
mobility is the same for both sub domains, unlike
capillary pressure which is considered differently
(Table 1). Note that the values presented in Table 1 are
dimensionless. The methodology used in this work for
the computational experiments, the numerical values
for the parameters, and functional expressions for
mobilities have been previously applied by Cancès
(2008), Ern et al. (2010) and Hoteit and Firoozabadi
(2008). Specifically, and for reasons of computational
simplicity, for the mobility function µβ,i, β = w, o;
i = 1, 2, a generic quadratic function was used, which
made it unnecessary to assign a specific numerical
value to the absolute permeability.

The simulations were carried out using a linear
function for the capillary pressure, given by, pc(u) =

b − au, with a, b > 0. On this note that this
linear expression can be viewed as a linear version
(after applying log) from the general expression
Brooks-Corey (Bear, 1988; Helmig, 1997; Hoteit and
Firoozabadi, 2008): pc(u) = pdu−1/λbc , where pd is
the threshold (or entry) capillary pressure, and usually,
0.2 < λbc < 3.0, where a very small λbc describes
a single material grain size, while a very large λbc

indicates a highly non-uniform material (Helmig,
1997). Therefore, in the simulations (cf. section 4.2.4)
the slope a can be interpreted as a = 1/λbc. For this
reason 0.2 < 1/a < 3.0, that is, 1/3 < a < 5,
and has been considered a = 1/2 as the reference
value. Linear functions for capillary pressure was
applied in Cancès (2008), Helmig (1997), and Kinjal
et al. (2012), for example. Some reference parameters
values are unrealistic (porosity equal to one, for
example). However, the simulations were executed
using realistic values taken from a neighborhood of
the reference values. The objective of the experiments
was to evaluate: the impact of gravitational the term
(section 4.1 versus section 4.2), the porosity (section
4.2.1), the initial water saturation (section 4.2.2), the
total flow-rate and inflow of water phase (section
4.2.3), and the capillary pressure (section 4.2.4).
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Table 1. Functions and reference values used for the simulations (i = 1, 2).

Name Symbol Value

Porosity of Ωi φi 1
Slope in capillary pressure a 1/2
Intercept in capillary pressure pc,1 b1 2
Intercept in capillary pressure pc,2 b2 3
Capillary pressure in Ωi pc,i(u) bi − au
Water mobility in Ωi µw,i(u) u2

Oil mobility in Ωi µo,i(u) (1 − u)2

Fractional flow in Ωi fi(u) u2

1+2u(u−1)
Total flow-rate q 1
Inflow of water phase qw 1
Diffusion function in Ωi ϕi(u) 1

4 ( u3

3 −
u2

2 −
u
2 + 1

2 tan−1(2u − 1)) + π
32

1 
 

 1 

 2 
Figure 1 3 

4 
Fig. 1. Schematic of the physical model for the
simulated porous medium.

The computer code was successfully validated by
Cancès (2008 and 2009), that is, the convergence
of numerical algorithm was proved, from theoretical
point of view. By this reason, and with the objective
of to check the numerical convergence (but not to
estimate the rate of convergence), different spatial
meshes were considered: 250, 500, 750, 1000, 1250,
1500, 1750, and 2000 nodes in the interior of Ω1 =

] − 1, 0[. The curve of approximation of the water
saturation on the left side of interface, that is, u0,1,
built with 2000 nodes and without the gravitational
term, was chosen as “reference function” or “exact
solution”. Table 2 show the relative error computed
with the norms || · ||p , p = 1, 2,+∞. It is clear from
Table 2 that the computational code is numerically
convergent.

4.1 Simulations without the gravitational
term: λ(u)(ρo − ρw)g and u0 = 0 as
initial condition

In this section, the numerical simulations performed
for the solution of the algebraic system Eqs. (9)-
(13), without gravitational term, are reported. The
simulations (shown in Fig. 2a to Fig. 2d) were
performed using the functions and parameters given in
Table 1. In each case, the physics of the phenomenon
was analyzed. Initially, the column is fully saturated
with oil, i.e., {u0 = 0}. Fig. 2a shows the water
saturation in Ω1 =] − 1, 0[, at various time points.
At t = 0.758562[−] the water saturation at {x =

0−} is equal to 1.0, {u0,1 = 1} that is, the left
side of the interface does not contain oil. Fig. 2a
also shows that the water front reaches the interface
between t = 0.72[−] and t = 0.74[−]. According
to the capillary pressures used in the experiments,
the saturation {u0, 1 = 1} is the threshold saturation,
that is the saturation with which the entry pressure
is obtained, that is, the capillary pressure needed
to displace the non-wetting phase from the largest
pore, which occurs at t = 0.758562[−]. Once the oil
saturation begins to decrease on the left side of the
interface {x = 0−}, the rate of change of oil saturation
in the domain Ω1 =] − 1, 0[ decreases. The most
notable aspect of Fig. 2a is that on the left side of the
interface {x = 0−}, the oil is removed within a short
time, when compared to the total simulation time,
which makes it essential to use an adaptive selection
for the time step. Fig. 2b shows the water saturation
in Ω2 =]0, 1[ at various time points. Fig. 2a shows
that shortly before time t = 0.76[−], the oil begins
to withdraw from domain Ω2, and Fig. 2b shows that
the water saturation is stabilized at approximately 0.8,
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at approximately t = 2.00[−]. Once the oil saturation
begins to decrease at the boundary {x = 1}, the rate
of change of oil saturation in the domain Ω2 =]0, 1[
decreases. From Figs. 2a and 2b, is possible to deduce
that the withdrawal of oil is approximately 3% slower
in Ω2 =]0, 1[ than in Ω1 =] − 1, 0[. From Figs. 2a and
2b is also possible to estimate the oil recovery factor
and the time needed to obtain the oil recovery factor.
Fig. 2c shows the evolution of the water saturation
on the left side of the interface {x = 0−} from t =

0.72[−] to t = 0.77[−]. In Fig. 2c the oil begins to be
withdraw from the left side of the interface is observed
from time t = 0.73[−], and the oil is completely
withdrawn shortly before t = 0.76[−], specifically at
t = 0.758562[−], as in Fig. 2a. Note that the filling of
water (draining of oil) on the left side of the interface
{x = 0−} takes approximately 4%, in proportion to
t = 0.758562[−] when u01 = 1. This percentage is

similar to that estimated for the difference between the
oil withdrawal rates between the homogeneous sub-
domains Ω1 =]−1, 0[ and Ω2 =]0, 1[, which gives rise
to the conjecture that the time needed to overcome the
discontinuity in the capillary pressure at the interface
is significant in proportion to the time when u01 = 1.
Fig. 2d shows the evolution of the water saturation
on the right side of the interface {x = 0+} from time
t = 0.75[−] to t = 0.80[−]. The evolution of the
water saturation on the two sides of the interface is
very different. Indeed, according to Fig. 2c, the oil is
quickly flushed from the left side {x = 0−}, whereas
on the right side {x = 0+}, the oil is not completely
withdrawn, and withdraws at a lower rate, and the
water saturation is stabilized approximately 0.8 (Fig.
2b). This difference in the saturation curves on both
sides of the interface can be explained by the lower
permeability of oil in the sub-domain Ω2 =]0, 1[.

a)

2 
 

 1 

 2 
Figure 2 3 

4 

b)

3 
 

 1 

 2 
Figure 3 3 

4 

c)

4 
 

 1 

 2 
Figure 4 3 

4 

d)

5 
 

 1 

 2 
Figure 5 3 

4 

Fig. 2. Water saturation curves (without gravitational term): (a) in the sub-domain Ω1 =] − 1, 0[, (b) in the sub-
domain Ω2 =]0, 1[, (c) on the left side of the interface {x = 0−}, (d) on the right side of the interface {x = 0+}.
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Table 2. Relative error with respect to u0,1 computed with 2000 nodes.

Number of nodes || · ||1 || · ||∞ || · ||2

250 0.269354 0.254267 0.245188
500 0.113442 0.169730 0.115390
750 0.062294 0.130614 0.067469

1000 0.037086 0.102153 0.042136
1250 0.021885 0.062320 0.025037
1500 0.011835 0.022437 0.012999
1750 0.005018 0.009583 0.005505
2000 0.000000 0.000000 0.000000

4.2 Simulations with the gravitational
term: λ(u)(ρo − ρw)g and u0 = 0.01
as initial condition

In this section, the numerical simulations performed
for the solution of the algebraic system Eqs. (9)-(13),
with gravitational term, are reported. The simulations
(shown in Fig. 3a to Fig. 7c) were performed using
the functions and parameters given in Table 1. In each
case, the physics of the phenomenon was analyzed.
Fig. 3a shows the water saturation evolution on the
sub domain Ω1 =] − 1, 0[ from t = 0.000167 to
t = 0.556730. Through the comparison of Figs.
2a and 3a it shows that oil recovery is faster
with the gravitational term. Furthermore, the water
saturation in the left side of the interface increases
its value virtually from the beginning due mainly
to the presence of gravitational term. Figs. 3b and
3c show the evolution of water saturation on the
interface (from left and right respectively) with and
without gravitational term. Fig. 3c shows that the non-
inclusion of gravity in the mathematical model could
lead to an overestimation of the recovery factor. This
section ends with Fig. 3d showing the simultaneous
evolution of water saturation at the interface.

4.2.1 Effect of the initial condition on the water
saturation at the interface

Fig. 4 shows the evolution of water saturation on the
left side of the interface for different values of the
initial saturation of the porous medium. It is noted that
an increase in initial water saturation of the porous
medium involves a faster increase of saturation on

the left side of the interface. Fig. 4 suggests that an
increase in the initial water saturation could produce
a faster oil recovery, but not necessarily a greater
amount of oil.

4.2.2 Effect of the porosity on the water saturation at
the interface

Fig. 5a shows the water saturation on the left side
of the interface {x = 0−} for different and realistic
values of the porosity: φ = 0.2, 0.4, 0.6, 0.8, 1.0. It
has been considered a porosity value equal to one in
order to illustrate and establish the extreme behavior
on this parameter. A decrease in porosity results in the
left side of the interface becoming fully saturated in
less time. This decrease is due to the variation in the
available empty space that will be occupied by water,
i.e., the lower porosity increases the fluid rate inside
the porous medium, and the oil phase moves more
quickly through porous medium. This is valid under
the assumption that the porous structures studied are
consistent with the pressure, that is, that the porous
matrix is non-deformable in the range of pressures
simulated. Note that from Fig. 5a, an increase of 0.2[-]
units of porosity implies a decrease of 0.1[-] units of
time required to saturate the left side of the interface
with water. Fig. 5b shows the water saturation on the
sub domain homogeneous Ω1 =]−1, 0[, at time t = 0.4,
for different values of porosity. It is clearly seen that
a smaller value of porosity involves faster progress
wetting front and increased oil recovery. Figs. 5a and
5b illustrates the importance of properly estimate the
porosity, which significantly impacts the saturation of
fluid phases.
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4 Fig. 3. Water saturation curves: (a) in the homogeneous sub-domain Ω1 =]−1, 0[, (b) on the left side of the interface
{x = 0−}, (c) on the right side of the interface {x = 0+}, (d) on the left and the right side of the interface {x = 0}.
Simulations in Figures (a) y (d) include the gravitational term.
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Figure 10 3 

4 Fig. 4. Water saturation curve on the left side of the interface {x = 0−}, at different initial condition: u0 =

0.01, 0.05, 0.10, 0.15, 0.20. Simulations include the gravitational term.
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Figure 11 3 
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Figure 12 3 

4 Fig. 5. Water saturation curves (with gravitational term) at different porosities values φ = 0.2, 0.4, 0.6, 0.8, 1.0: (a)
on the left side of the interface {x = 0−}, (b) in the sub-domain Ω1 =] − 1, 0[ and in the time t = 0.4.

4.2.3 Effect of the water injection rate qw on the water
saturation at the interface

In this section we evaluate the impact of a relevant
control parameter such as the water injection rate qw

at the upper end of the column {x = −1}. According
to van Duijn et al. (1995), the essential parameter that
determines the amount of oil trapped is (σ/visw) · qw,
where σ is the interfacial tension between the oil and
water and vvisw is the water viscosity. In the following
analysis, σ and vvisw are assumed to be constant. Fig.
6a shows the effect of qw on the water saturation on
left side of the interface {x = 0−}. Fig. 6b shows
the water saturation on the sub domain homogeneous
Ω1 =] − 1, 0[, at time t = 0.4, for different values of
qw. The reference value was qw = 1 (Table 1). Figs. 6a
and 6b shows that a decrease in qw implies an increase
in the time required to initiate the evacuation of oil
on the left side of the interface, but this relationship
is not linear. However, as qw increases, at a certain
value, the impact on the left side of the interface is
less significant. In other words, an increase in qw is
not always justified. An important application of this
computational code is the ability to evaluate several
scenarios for production. For a specific example, this
method could be used to determine the best value of qw

given a heterogeneous porous media such that, the oil
saturation is minimal, and the process time is as short
as possible.

4.2.4 Effect of the capillary pressure: pc(u) = b − au,
on the water saturation at the interface

The objective of this section is to evaluate the impact
of grain size material on water saturation, where the
Brooks-Corey parameter λbc = 1/a represent, the

grain size material in the porous matrix (Helmig,
1997). Figs. 7a and 7b shows the water saturation
on the interface (left and right, respectively) for
different values of the capillary pressure slope: a =

0.5, 1.0, 2.0, 3.0, 4.0. The value a = 0.5 indicates a
highly non-uniform material, while the value a = 4.0
describes a single grain size material. The reference
value for the slope was a = 0.5 (Table 1). Fig. 7a
shows that a decrease in the slope a implies an increase
in the startup time and a decrease in the time required
to empty the oil from the left side of the interface
{x = 0−}. Fig. 7a also shows that an increase in the
slope a implies a decrease in the startup time and an
increase in the time required to empty the oil from the
left side of the interface {x = 0−}. Fig. 7a confirm, and
allow us to quantify in relative terms, the importance
of the capillary pressure on the ability to remove the
oil from a heterogeneous porous medium.

From Fig. 7b it is observed that an increase in the
value of the slope implies that the time required to
reach the full saturation state is slightly lower. Fig.
7a shows that the impact of changing the capillary
pressure is less significant on the right side of the
interface. In the case where the porous medium is
formed by a material with a more uniform grain size
the water saturation increases faster on the left sub
domain. However, the evolution of water saturation on
the left side of the interface is slower. Conversely, if
the porous material has a non-uniform grain size the
evolution of water saturation is slower on the left sub
domain. However, on the left side of the interface the
evolution of water saturation is faster. The behavior
on the left sub domain is expected, unlike what was
observed in the simulations on the right side of the
interface, where it notes, if you increase the value of
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the slope a, the water saturation increases faster, but
in the long term the recovery factor is lower. Fig. 7c
shows the water saturation on the homogeneous sub
domain Ω1 =] − 1, 0[, at time t = 0.4, for different
values of the slope a. The analysis from Fig. 7b is

ratified by the behavior observed in Fig. 7c, that is,
if the porous medium has a more uniform grain size
then the water saturation increases faster, but it does
not necessarily improve the recovery factor.
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Figure 14 3 

4 Fig. 6. Water saturation curves (with gravitational term) at total rates flow and water injection rates: q = qw =

1, 2, 3, 4: (a) on the left side of the interface {x = 0−}, (b) in the homogeneous sub-domain Ω1 =] − 1, 0[.
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4 Fig. 7. Water saturation curves (with gravitational term) at different capillary pressure slope a = 0.5, 1.0, 2.0, 3.0, 4.0:
(a) on the left side of the interface {x = 0−}, (b) on the right side of the interface {x = 0+}, (c) in the homogeneous
sub-domain Ω1 =] − 1, 0[.
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Conclusions

In this paper, we have considered the problem of
simulating the water saturation, and by inference,
oil saturation, of the interface separating two
homogeneous media of the porous matrix. To
accomplish this, a heterogeneous porous column
composed of two homogeneous media was
considered, where the interface was the main interest
in this research. From a modeling point of view, the
gravitational term has a high impact on all simulations
performed. By another hand, a full characterization of
the hydrodynamics of a porous medium is essential
to simulate the oil recovery factor. In effect, in a
column of porous material, small differences in the
porosity and in the grain size material, that is, the
Brooks-Corey parameter in the capillary pressure, can
lead to large differences in the oil recovery factor.
However, the impact is greater on the upstream side of
the interface. The water injection rate is a very useful
control parameter. A small increase in water injection
rate could result in a significant increase in the oil
recovery factor on both upstream and downstream
sides of the interface. In this sense the evaluation of
the intial condition of water saturation suggests, from
numerical point of view, adding water to the system
prior to the injection process itself. However, this
apparent solution is not feasible because the industrial
costs may be too high. Finally, the simulation of the
saturation at the interface is useful for estimating the
time delay in the evacuation of the oil generated by
the heterogeneity. The studied algorithm has potential
for use in earlier stages of design and planning for oil
extraction.
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Nomenclature
a slope of capillary pressure
b intercept of capillary pressure
g gravitational constant
fi fractional flow
Fn

j discrete flow
ni normal vector
n,N,M mesh parameters
pβ pressure of phase
pc capillary pressure
pd entry pressure

q total flow rate
qw water injection rate
T total simulation tiem
t time
u water saturation
u0,i trace of u on interface
u0 initial condition
vβ Darcy’s velocities
vvisw water viscosity
x Cartesian coordinate
y+ maximum between y and 0

Greeks letters
Ω mathematical domain
Ωi sub domain i
Γ interface
φ porosity
µβ mobility of phase β
ρβ density of phase β
λ gravitational function
ϕ diffusion function
δt time step
δx spatial step
λbc Brooks-Corey parameter
σ interfacial tension

References
Amini, A. and Schleiss, A. (2009). Numerical

modeling of oil-water multiphase flow
contained by an oil spill barrier. Engineering
Applications of Computational Fluid Mechanics
3, 207-219.

Aziz, K. and Settari, A. (1979). Petroleum
Reservoir Simulation. Elsevier Applied Science
Publishers. London.

Bastian, P. and Helmig, R. (1999). Efficient fully-
coupled solution techniques for two-phase flow
in porous media-Parallel multigrid solution and
large scale computations. Advances in Water
Resources 23, 199-216.

Bear, J. (1988). Dynamics of Fluids in Porous Media.
Dover. New York.

Bertsch, M., Passo, R. and van Duijn, C. (2003).
Analysis of oil trapping in porous media flow.
SIAM Journal on Mathematical Analysis 35,
245-267.
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