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Abstract
This work aimed to study the effect of different types of surfactants (non-ionic, cationic, anionic) on the micelle size
and aggregation pattern of α-tocopherol emulsions produced by microfluidization prepared by using one and two
cycles. Tween-20, Lecithin (PhC) and dodecyl sodium sulfate (SDS) were used as the non-ionic, cationic and anionic
surfactants, respectively. Particle size was determined by image analysis and agglomeration was characterized with
micromorphometric parameters such as fractal dimension (FD) and lacunarity (Λ). Average size was maximum
(10.65 µm) when using Tween-20, whereas this parameter was the lowest (2.76 µm) when using PhC. The greater
contributions to changes in FD and Λ were due to the presence of Tw and SDS. With PhC, it was possible to
observe a system with high values of FD (1.92) and low values of Λ (0.15). PhC contributes to the stability of the
emulsion despite of the concentration and number of microfluidization cycles and presented better dispersion and
more irregular micelle structures than when using other surfactants.
Keywords: agglomerates, surfactant, fractal dimension, lacunarity and microfluidization.

Resumen
En este trabajo se estudió el efecto de diferentes tipos de surfactantes (no iónico, catiónico, aniónico) en el

tamaño y forma de las micelas de emulsiones de α-tocoferol (AT) producidas por microfluidización usando uno
y dos ciclos. Tween-20 (Tw), lecitina (PhC) y dodecil sulfato de sodio (SDS) se utilizaron como surfactante no
iónico, catiónico y aniónico, respectivamente. El tamaño de partı́cula se determinó por análisis de imágenes y la
presencia de aglomeración se caracterizó a través de parámetros micromorfométricos como la dimensión fractal
(FD) y lagunaridad (Λ). Se alcanzó el tamaño máximo (10.65 µm) de micela cuando se utilizó Tw, mientras que
este parámetro fue el más bajo (2.76 µm) cuando se utilizó PhC. Se encontró que las mayores contribuciones a los
cambios en la FD y Λ son debido a la presencia de Tw y SDS. Con la PhC se pudo observar un sistema con valores
altos de FD (1.92) y valores bajos de Λ (0.15). La PhC contribuyó a la estabilidad de la emulsión indepedientemente
del número de ciclos de microfluidización y de su concentración y presentó una mejor dispersión y estructuras
micelares más irregulares que con el uso de los otros surfactantes.
Palabras clave: aglomerados, surfactante, dimensión fractal, lagunaridad y microfluidización.
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1 Introduction

Vitamin E is an essential micronutrient in human and
animals diets due to its biological activity and its
powerful antioxidant activity. Vitamin E refers to a
class of molecules that are related in their chemical
structures and biological activities among which the
most important is AT (Yang and McClements, 2013a),
which is a powerful antioxidant present in biological
and food systems (Hoppe and Krennrich, 2000;
Ricciarelli et al., 2002; Eitenmiller and Lee, 2004;
Zingg and Azzi, 2004; Schneider, 2005; Sagalowicz
and Leser, 2010; Fujita et al., 2012; Borel et al., 2013)
and there has been a great interest in the fortification
of many processed foods and beverages with this
compound (Gonnet et al., 2010).

AT can be easily oxidized by the action of heat
and light during processing, transport and storage
(Bramley, et al., 2000; Gawrysiak-Witukska et al.,
2009) thus making incorporation of AT in commercial
products a difficult task due to its chemical instability,
low water solubility and consequently highly variable
bioavailability (Gonnet et al., 2010; Yang and
Huffman, 2011; Yang and McClements, 2013b). Its
low water solubility implies that it cannot be readily
dispersed in aqueous-based products, which has been
overcome by protecting AT into a matrix system
formed by biopolymers such as gum arabic (GA),
maltodextrin (MD), etc. in the form of an emulsion
(Chiu and Yang, 1992; Chen and Wagner, 2004;
Gonnet et al., 2010, McClements et al., 2009; Feng
et al., 2009; Yang and McClements, 2013b; Mayer et
al., 2013a).

Physicochemical properties of food emulsions
include: size, charge and interfacial properties
of individual micelles/micellar agglomerates
(M/MA) (Friberg et al., 2004; McClements, 2005;
McClements, 2011) and can be manufactured by
using a variety of high and low-energy methods.
The former include mechanical devices that generate
intense breakdown forces such as high-pressure
valve homogenizers, microfluidizers and ultrasonic
devices which blend oily and aqueous phases and wall
materials with or without the addition of surfactants
(Jafari et al., 2006; Ciron et al., 2010; McClements,
2012). Low-energy methods are based on the
spontaneous formation of oil drops in surfactant-oil-
water mixtures (Mayer et al., 2013 a and b; Saberi
et al., 2013). The sizes of drops that can be produced
depend on the process operating conditions and system
composition (Jafari et al., 2007a, 2008; Boom, 2008;
McClements and Rao, 2011).

Microfluidization is a high-energy homogenization
that induces turbulent mixing, localized energy
dissipation which generate a uniform pressure profile
(Jafari et al., 2007a). Distribution of the particle sizes
produced by a microfluidizer has been reported to
be narrower than with traditional homogenization
methods (Dalgleish et al., 1996; Perrier-Cornet et al.,
2005; Jafari et al., 2006, 2007a) and is the result of
competition between breakdown and coalescence and
(when used) the effects of emulsifiers which adsorb in
the newly formed interface. If collision time between
micelles is shorter than adsorption of surfactant,
the new interface cannot be completely covered
by the emulsifier and coalesce. Therefore, drops
coalescence will depend on both, emulsifier adsorption
and drop collision rates. Since newly formed drops
are not completely covered by emulsifier, a higher
collision rate produces a higher coalescence rate
(over-processing) which can be prevented through an
appropriate selection of emulsifiers and adjustment of
their concentration (Jafari et al., 2008). An emulsifier
is an active surface molecule which enables drop
breakdown and avoids aggregation (McClements and
Rao, 2011; Kralova and Sjoblom, 2009).

The nature of drop interactions determines the
structure of the newly formed M/MA, their rheology
and stability of produced emulsion (Friberg et al.,
2004; McClements, 2005). Interaction between drops
will be influenced by the components of the emulsion,
mainly by those in the interface, which is formed
by active surface molecules (surfactants, polymers,
proteins, etc.), which in turn interact during the
formation of emulsion and provide different features to
the dispersed system (Wilde, 2000). During interaction
between drops, there are different possibilities of drop-
surfactant arrangements, since molecules can compete
for adsorption sites, or can mutually promote their
adsorption (Petrovic et al., 2010; Chaparro-Mercado
et al., 2012).

Digital image analysis (DIA) is a powerful and
advantageous tool used in the assessing of structures
and can perform evaluation of microstructural
properties and evidence subtle differences in
aggregates morphology, which may be carried out
by fractal analysis (Barleita and Barbosa-Canovas,
1993). The word fractal comes from the latin word
fractus that means broken, and the corresponding
latin verb frangere which means breaking (to create
irregular fragments) and which was introduced
by Mandelbrot (1983), to characterize spatial and
temporal phenomena that are continuous (in space
and/or time) but not defined.
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Fractal theory proposes different methods for
describing the inherent irregularity of phenomena
or objects (Veleva et al., 2013). This description
process is characterized by a parameter known
as fractal dimension (FD) (Kenkel and Walker,
1996) which in turn may be estimated by using a
number of algorithms which selection depends on
available data and pursued information (Lopes and
Betrouni, 2009). Fractal dimension of the contour
of objects can be determined by applying the box-
counting algorithm in which binarized images (2-
bits) are separated from their contour and assessed
by using boxes of different pixel sizes in a geometric
progression (Barleita and Barbosa-Canovas, 1993).
Agglomerates with relatively smooth contours have
lower fractal dimensions (close to 1) than those with
rough borders (close to 2). On the other hand, the
lacunarity (Λ) has been used to assessing objects with
similar fractal dimensions and which may possess
different morphological appearance. Lacunarity gives
information about heterogeneity of empty spaces of
fractal structures and which are intercepted in different
proportion by the box in the above described box
counting method (Lobato-Calleros et al., 2009).

Morphological description by using fractal
dimension and lacunarity has been applied to systems
such as crystals (Velázquez-Camilo et al., 2010),
biological tissues (Pantic et al., 2013), yogurt (Lobato-
Calleros et al., 2009), blood plasma (Dàvila and Parés,
2007), maltodextrin agglomerates (Meraz-Torrez et
al., 2011) and others. Fractal dimension and lacunarity
provide complementary information on particle
morphology and with heterogeneity or structure of
spaces among particles, these parameters can be
linked, for example, to physicochemical properties of
the assessed system. In this study, we characterized
micelle agglomerate, through micromorphometric
parameters by using FD and Λ evaluations as a
measure of irregularity of M/MA and heterogeneity
of their distribution or dispersion in the continuous
phase as exemplified in Figure 1. Based in findings
from previous studies on the preparation of AT
emulsions, (Quintanilla-Carvajal et al., 2011; Omar
et al., 2009), the aim of this work was to evaluate
the effect of Tween 20, lecithin and dodecyl sodium
sulfate (nonionic, cationic, and anionic surfactants
respectively) on micelles and micelle agglomerates
size and morphology of AT emulsions produced by
microfluidization and by using MD and GA as wall
materials.

Figures  

 

 

 

Figure 1. Representation of fractal dimension and lacunarity in emulsions. 

 

 

 

 

Figure 2. Example of images taken with optical microscope (gray-scale and binarized). 
Value of scale is 50 $\mu$m in both cases. 

Fig. 1. Representation of fractal dimension and
lacunarity in emulsions.

2 Material and methods

2.1 Materials

(±) α-tocoferol (AT) (Sigma Aldrich, Germany),
maltodextrin DE20 (MD) (CPI Ingredientes, Mexico),
gum Arabic (Norevo, Germany), Tween 20 (Sigma
Aldrich, USA), soy lecithin (Sigma Aldrich, USA),
dodecyl sodium sulfate (Sigma Aldrich, USA) and
type I water (Millipore, Ireland) were used as
ingredients of the emulsion.

2.2 Preparation of pre-emulsions

For preparation of pre-emulsions, AT and either
Tw, PhC or SDS were slowly added to the
solution containing the wall material (gum
arabic/maltodextrin) while stirring using a knife blade
type homogenizer (Oster, model 2612, USA) during
2 minutes and a blank pre-emulsion was prepared
without the addition of surfactant. Solute content of
the final pre-emulsion was about 12% and studied
formulations are specified in Table 1. Based on
preliminary experiments, surfactant concentrations of
0.80 and 1.60 % w/w were chosen for preparing the
emulsions. These concentrations fall within the ranges
used for preparing emulsions with added surfactants
(McClements, 1994). Three pre-emulsions for each
surfactant type and three with no surfactant were
prepared, for a total of 12 pre-emulsions.

2.3 Microfluidization

For emulsion formation a M-110Y microfluidizer
(Microfluidics R©, Newton, MA, USA) was used, fitted
with two interaction chambers: the primary one of the
type “Y” (F20Y, φ =75 µm) and the secondary one of
the type “Z” (H30Z, φ = 200 µm).
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Table 1. Formulation of preemulsion and
emulsions at 1 and 2 microfluidization cycles

Component Amount (%(w/w))

α-T 2.83
MD 4
GA 4

Tw, PhC, SDS 0, 0.80 and 1.60
Water type I 89.17, 88.37 and 87.57

The air chamber of the equipment operated at 40
MPa with a liquid pressure of 68 MPa (Microfluidics,
2008) and by passing emulsions 1 and 2 times
(cycles) through the equipment. The 12 pre-emulsions
described in 2.2 above, were subjected to 1 and 2
cycles of microfluidization.

2.4 Image capture

1 mL samples of the produced emulsions were
transferred to imaging immediately after formation of
the pre-emulsion or emulsion by microfluidization by
using a digital camera coupled to a light microscope
(Nikon Digital SightDS-2Mv, TV Lens 0.55XDS,
Japan) coupled to a personal computer (2.67 GHz, 1.0
GB RAM) by means of NIS-Elements F2.30 software.
Images were acquired at 600x of total amplification
with a resolution of 1280 × 960 pixels (3 µm/pixel)
and were finally stored in *.jpg format. A Neubauer
chamber (Boeco, Germany) was used to establishing
the reference observation scale.

2.5 Particle size (PS) and image analysis

Average PS for each emulsion was determined
by microscopy trough image analysis (Tansel and
Sevimoglu, 2006; Zuñiga et al., 2012; Schuster
et al., 2012). 5 fields of view were observed
in an optical microscope Nikon H55O5 (Japan)
with halogen lighting and maximum diaphragm
aperture. Images were processed by means of the
ImageJ 1.44 (NIH, USA) software (Abramoff et
al., 2004); contrast and gray-scale threshold level
(threshold) were adjusted automatically and manually,
respectively in order to define individual object
contours and thereby producing a binary image. The
Binary: Fill Holes function of the program, was
used to fill out the gaps or holes, and finally the
option Analyze Particles was applied. Images were
saved in *.jpg format, and area, Feret diameter, and
shape factor of individual species were obtained.

Figures  

 

 

 

Figure 1. Representation of fractal dimension and lacunarity in emulsions. 

 

 

 

 

Figure 2. Example of images taken with optical microscope (gray-scale and binarized). 
Value of scale is 50 $\mu$m in both cases. 

Fig. 2. Example of images taken with optical
microscope (gray-scale and binarized). Value of scale
is 50 µm in both cases.

Contour fractal dimension (FD) and lacunarity (Λ)
of micelles were determined by using the FracLac
2.5 plugin (Karperien, 2004; Dàvila and Parés, 2007;
Meraz-Torrez et al., 2011; Pantic et al., 2013) and
five crops were obtained from each image for further
analysis. In Figure 2, an example of obtained images
and processing is presented.

2.6 Statistical analysis

Statistical tests were performed by using the software
Minitab 16 (Minitab Inc., USA) and SigmaStat
3.5 (SigmaSoft, USA), which consisted of two-way
analysis of variance (Two-way-ANOVA), two-way
analysis of variance for repeated measures (Two-
way-RMANOVA) and Principal Component Analysis
(PCA). The level of significance for each test was
established at 2α = 0.05. When necessary, Student
Newman-Keuls test was used for comparison of means
(Montgomery, 1991).

3 Results and discussion

3.1 Effect of the concentration surfactants

Examples of images of the pre-emulsion and
emulsions prepared by using 0.80% of surfactant are
presented in Figure 3.
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Figure 3. Images (gray-scale) of prepared emulsions with distinct surfactants (concentration 
of 0.80 \%) and microfluidization cycles. “0” is pre-emulsion and “W/S” is without 
surfactant. Length of reference line is 50 $\mu$m. 
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Fig. 3. Images (gray-scale) of prepared emulsions with different surfactants (concentration of 0.80 %) and
microfluidization cycles. “0” is pre-emulsion and “W/S” is without surfactant. Length of reference line is 50 µm.

Formation of micellar agglomerates in emulsions
prepared by using Tw and SDS can be observed,
whereas emulsions without surfactant and containing
PhC had a better micelle dispersion.

In Figure 4 (a,b and c), it is possible to observe
size, FD and Λ of M/MA of the different emulsions
prepared by adding 0.80% of the different surfactants.
Sizes (Figure 4a) were statistically different for
each surfactant used and maximum (10.65 µm) and
minimum (2.76 µm) average sizes were observed for
pre-emulsions and microfluidized emulsions prepared
by adding Tw and PhC respectively. In emulsion
without surfactant and with PhC microfluidization
decreased the mean diameter of emulsions; however
when using Tw and SDS (nonionic and anionic
surfactants respectively) microfluidization did not
affect the size and induced micellar agglomerate
formation which was related to interactions between
both surfactants with the biopolymers due to
the competition for interface and displacement of
polymers. This phenomena, enabled flocculation by
depletion of non-adsorbed polymers which may
generate an osmotic attraction driving force between
drops which has been reported to increase with
polymer concentration so as to overcome repulsion
forces between drops (Klinkesorn et al., 2004; Jafari

et al., 2007b; Yao et al., 2013) or by forming
complexes that reduce surface activity (Wangsakan
et al., 2004). PhC, on the other hand, may interact
with GA possibly increasing its emulsifying capacity
(Omar et al., 2009).

Figure 4b shows that pre-emulsions prepared
by using surfactants had similar and greater FD’s
than emulsions without surfactant. In the emulsions
containing SDS, FD changed with microfluidization
cycles and FD values were statistically similar
for emulsions with Tw and PhC and greater than
those with SDS. Microfluidization increased FD for
emulsions without surfactant, but the value of this
parameter was similar to those of emulsions prepared
by adding Tw and PhC. Values of Λ had an opposite
trend than FD as shown in Figure 4c. Emulsion
without surfactant and Tw had similar values of Λ

when applying 1 and 2 processing cycles. Emulsions
prepared by using SDS and PhC had the highest and
lowest values of Λ, considering that these surfactants
promotes a greater interaction among the micelles.

FD values were associated to contour irregularity
of micelles or micellar agglomerates due to
composition of emulsion and processing, i.e., such
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a 

b 

c 

Figure 4. Bar graphs corresponding to variation of mean diameter (a) FD (b) and 
$\Lambda$ (c) for emulsions prepared with 0.80 \% of surfactant. “0” is pre-emulsion.  

0 

2 

4 

6 

8 

10 

12 

14 

0 1 2 

M
ea

n 
di

am
et

er
 (µ

m
) 

Tw 

PhC 

SDS 

S/S 

1.780 

1.800 

1.820 

1.840 

1.860 

1.880 

1.900 

1.920 

1.940 

1.960 

0 1 2 

FD
 

Tw 

PhC 

SDS 

S/S 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

0.350 

0 1 2 

Ʌ
 

Number of cycles 

Tw 

PhC 

SDS 

S/S 

Fig. 4. Bar graphs corresponding to variation of mean
diameter (a) FD (b) and Λ (c) for emulsions prepared
with 0.80 % of surfactant. “0” is pre-emulsion.

irregularity would be defined by spatial arrangements
of individual micelles of different sizes forming
micellar agglomerates. On the other hand, Λ is related
to agglomerate distribution and, in particular to their
spatial dispersion. High Λ values were related to
the formation of very complex structures that may
provide evidence of destabilization of the emulsions
by agglomeration. High Λ values have been associated
to short shelf lives of yogurt (Lobato-Calleros et al.,
2009).

Figure 5, shows captured images for emulsions
prepared by using 1.60 % of surfactant. Images show
the formation of micellar agglomerates in emulsions
prepared by using Tw and SDS. Emulsions prepared
without surfactant and those containing PhC had a
better dispersion at both concentrations of surfactant.

In Figure 6 (a,b and c), it is possible to observe
size, FD and Λ of M/MA of the different emulsions
prepared by adding 1.60% of the different surfactants.
Maximum size of M/MA (7.51 µm) was observed
for emulsions prepared with the addition of Tw
while the minimum ones (3.31 µm) were obtained by
using PhC as depicted in Figure 6a. In the emulsion
without surfactant and in those with PhC and Tw,
microfluidization decreased the mean diameter of
emulsions. On the other hand, in emulsions with
SDS, microfluidization increased the mean diameter
of emulsions (Tcholakova et al., 2004; Jafari et al.,
2008). Increasing the concentration of PhC (from 0.80
to 1.60%) did not cause significant changes (p >0.05)
in the sizes of the M/MA, however, when using Tw
and SDS high surfactant concentrations reduced sizes
of M/MA (Figure 4a and 6a).

Theoretical studies and experimental results
indicate that when using turbulent shear and excess of
surfactant (“rich in surfactant” regime), mean diameter
of drops was mainly affected by energy inputs in
the emulsification chamber and by the oil-water
interfacial tension which indicated that mean size,
largely depends on characteristics of surfactant (Taisne
et al., 1996). At the lower concentration of surfactants
mean size, strongly depends on type and concentration
of surfactant. It has been shown that mean size rapidly
decreases with an increase of initial concentration
of surfactant for this “poor in surfactant” regime.
Other important effect of a surfactant is its interfacial
adsorption rate which largely determines stabilization
of newly formed drops against coalescence (Schulz
and Daniels, 2000; Schultz et al., 2004; Jafari et al.,
2008).

Figure 6b show that the pre-emulsions had similar
FD values among each other and for emulsions
containing Tw, FD value (1.88) did not change
significantly (p >0.05) with microfluidization cycles.
Emulsions prepared with SDS and PhC and with
no surfactant, had similar FD values among them.
Microfluidization increase FD of emulsion with no
surfactant and with PhC. In Figure 6c, it is possible to
observe that Λ values of emulsions with no surfactant,
with SDS and PhC was similar. Emulsion with Tw
did no report statistic differences (p >0.05) in Λ with
microfluidization cycles.

The increase in surfactant concentration of
surfactants did not generate structural changes in
micelles prepared by the addition of PhC, since they
presented similar FD, Λ and mean size values in
contrast with emulsions prepared by adding Tw and
SDS at both concentrations of these compounds.
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Figure 5. Images (gray-scale) of prepared emulsions with distinct surfactants (concentration 
of 1.60\%) and microfluidization cycles. “0” is pre-emulsion and “W/S” is without 
surfactant. Length of reference line is 50 $\mu$m. 
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Fig. 5. Images (gray-scale) of prepared emulsions with different surfactants (concentration of 1.60%) and
microfluidization cycles. “0” is pre-emulsion and “W/S” is without surfactant. Length of reference line is 50 µm.

3.2 Descriptive model of surfactant-
morphology relationships (PCA
analysis)

Figure 7, is a bubble graph presenting a descriptive
model map of Λ and FD tendencies for the different
formulations used. PCA indicated that significant
contributions towards FD and Λ are due to Tw and
SDS. Addition of different concentrations of PhC, on
the other hand, did not generate significant differences
(p >0.05) in FD and Λ. High values of FD and low
values of Λ were obtained when using PhC and the
opposite for Tw and SDS regardless of concentration
or the use of 1 or 2 cycles of microfluidization cycles.

Information given by FD and Λ complement to
each other. Very small droplets contribute in a higher
proportion to the reported values of FD than the larger
ones since changes in the shape of contours of the
small particles affect its irregularity at a greater extent
than the changes in shape of large particles given
the resolution of the image capturing system and the

exactly equal procedure applied for processing each
image. Hence, the effect of the presence of very small
and very big droplets was, therefore, compensated.

FD, was related with micelle arrangements,
conjunction of individual particles, the irregularity of
each individual micelle and the amount of dispersed
material forming the structure of the agglomerate
whereas Λ was related with dispersion of particles
which in turn may be related to electrokinetic
potentials (Hunter, 1981). For example, in emulsions
containing PhC, individual particles are the smallest
and small irregular micellar agglomerates were, thus
formed. In emulsions containing Tw, individual
particles are greater in size, with larger and less
compact agglomerates than those in emulsions with
PhC and SDS, showing a high amount of individual
particles, with a non-occupied fraction, which tend to
form less homogeneous systems.
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a 

b 

c 

Figure 6. Bar graphs corresponding to variation of mean diameter (a) FD (b) and 
$\Lambda$ (c) for emulsions prepared with 1.60 \% of surfactant. ``0” is pre-emulsion.  
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Fig. 6. Bar graphs corresponding to variation of mean
diameter (a) FD (b) and Λ (c) for emulsions prepared
with 1.60 % of surfactant. “0” is pre-emulsion.

 

Figure 7. Bubble graph showing $\Lambda$-FD relationships for the different surfactants 
used (Descriptive model of surfactant-morphology relationships) 

 

Tables 

Table 1. Formulation of preemulsion and emulsions at 1 and 2 microfluidization cycles. 
Component Amount (\%(w/w)) 
$\alpha$-T 2.83 

MD 4 
GA 4 

Tw, PhC, SDS 0, 0.80 and 1.60 
Water type I  89.17, 88.37 and 87.57 
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Fig. 7. Bubble graph showing Λ-FD relationships for
the different surfactants used (Descriptive model of
surfactant-morphology relationships).

In emulsions with SDS, individual particles are
medium sized, having agglomerates with a lower
quantity of compacted particles.

The different behavior observed for each surfactant
in relation to particle size, contour irregularity and
spatial dispersion homogeneity might be related to
the ionic character of the surfactants as well as their
HLB value. The aqueous phase would then hold MD
and GA since these compounds had more affinity for
water than for the AT. The surfactants used in this
work have different HLB value (Griffin, 1949), being
approximately 15, 12 and 7 for Tween 20, SDS and
PhC, respectively so Tw 20 and SDS interact at a
greater extent with the aqueous phase than with the oil
phase (AT), which may explain the aggregation and the
higher contour irregularity of AT agglomerates. The
PhC, besides its cationic character, has higher affinity
for the AT, which generates dispersed, smoother and
small aggregates. PhC reduces permeation rate of free
radicals through emulsion interface at a greater rate
than other surfactants as Tw (Pan et al., 2013).

Conclusions
The three surfactants induced the formation of
micellar agglomerates, the contribution of these
surfactants to macroscopic homogeneity of the
emulsion was a function of concentration and
microfluidization. Lecithin increased macroscopic
homogeneity of emulsions regardless of the use of 1
or 2 cycles of microfluidization and its concentration.
The lowest diameters of micelles were obtained
with this surfactant, which resulted in a better
dispersion and irregular micellar structures (high
FD). Macroscopic homogeneity of emulsion was
not influenced by smooth or irregular contours of
micelles or micellar agglomerates. FD could be
related to geometric homogeneity of micelles and was
partially controlled by particle size and Λ was related
with dispersion of micelles and their size. Image
analysis technique provided valuable information
on system behavior as related to composition and
processing. Assessment of emulsion stability is
a complex and multivariate task, which requires
accumulated evidence from a number of experimental
and theoretical analysis.
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