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PRODUCCIÓN DE BUTANOL USANDO Clostridium beijerinckii

H.I. Velázquez-Sánchez, M.C. Montes-Horcasitas and R. Aguilar-López1∗
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Abstract
At the present work the construction of an unstructured kinetic model guided by a phenomenological perspective
was carried out to reproduce and simulate experiments regarding butanol production by Clostridium beijerinckii
considering the ABE metabolic pathway reported for this genre as a biochemical basis for it. Fit and parametric
sensitivity analyzes were performed to ensure the model could reproduce experimental kinetics at an overall
correlation coefficient of 0.9882 and determined its high sensitivity thereof to the determination of the specific cell
growth and death rates (µmaxX and kd) butanol production (µmaxBut) and biomass / substrate yield calculation (YX/S g).
Finally, in silico batch analyzes were conducted at 60, 100, 150 and 200 g / L of initial glucose concentration values
obtaining final butanol titers of 12.97, 13.95, 14.2 and 14.3 g / L respectively, which are consistent with the reported
in the literature for in vitro experiments.

Keywords: modeling, biofuels, Clostridium, butanol, phenomenological.

Resumen
En el presente trabajo se llevó a cabo la construcción de un modelo cinético no estructurado desde la perspectiva
fenomenológica para reproducir y simular experimentos de producción de butanol por Clostridium beijerinckii
tomando como base bioquı́mica la ruta metabólica ABE reportada para este género. Se realizaron análisis de
ajuste y sensibilidad paramétricos los cuales permitieron que el modelo reprodujera cinéticas experimentales con
un coeficiente de correlación global de 0.9882 y determinaron la alta sensibilidad del mismo a la determinación de
las velocidades especı́ficas de crecimiento y muerte celular (µmaxX y kd), producción de butanol (µmaxBut) y a el
cálculo del rendimiento biomasa / sustrato (YX/S g). Finalmente se condujo un análisis in silico de cinéticas en lote
a 60, 100, 150 y 200 g/L de glucosa inicial prediciéndose valores de concentración de butanol final de 12.97, 13.95,
14.2 y 14.3 g/L respectivamente, demostrando ser consistentes con lo reportado en la literatura para experimentos
in vitro.

Palabras clave: modelado, biocombustibles, Clostridium, butanol, fenomenológico.

1 Introduction

Biofuels can be defined as any solid, liquid or gas
generated through the metabolism of living beings and
includes from biomass itself to molecules resulting
from the degradation of various substrates (Qureshi
et al., 2008). Butanol is an alcohol comprised by
four carbon atoms which can be used industrially

as a solvent for the manufacture of explosives or as
fuel in internal combustion engines (Berezina et al.,
2009). Unlike ethanol which is currently produced
in high volume to be used as biofuel, butanol has a
lower hygroscopicity and increased caloric content
that allows it to be used as an additive to gasoline
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or as a 100 % replacement for it without harming
conventional engines (Mayank et al., 2012).

It has been known for over 100 years that
butanol can be obtained by fermentation culturing
strict anaerobic Gram-positive bacteria of the genus
Clostridium, which have a metabolic pathway known
as ABE which allows them to transform sugars or
CO2 to acetic and butyric acids in a first phase called
acidogenesis and subsequently to butanol, acetone
and ethanol in step known as solventogenesis, such
molecular mechanisms are linked to the sporulation
process and it depends on the generation of a pH
gradient between the cell and the culture medium due
accumulation of molecules produced in the acidogenic
stage (Lee et al., 2008).

ABE fermentation industry was established since
the late nineteenth century and remained as one of the
primary sources for obtaining organic solvents until
1960’s decade when it faced competition from the
emerging petrochemical industry, which struck down
production costs; however, the over exploitation of
oil fields coupled with the increase in raw material
prices and the negative impact of this industry over the
environment have led to renewed interest in studying
alternative energy sources to satisfy global demand
(Chen et al., 2013).

Within the range of species belonging to the genus
Clostridium the so-called C. acetobutylicum is capable
of fermenting glucose to acetone, butanol and ethanol
in the approximate proportions of 3:6:1 solvent moles
per mole of sugar respectively. This species has
been modified by molecular biology techniques to
prevent the sporulation and increase its tolerance to
high concentrations of solvents in order to increase
productivity, however this strain hardly produces
butanol in a titer above 14 g/L and its efficiency is
limited by the need of glucose as its sole carbon source
(Chen et al., 2013). Thus the scientific community
has sought to isolate and characterize new species
presenting beneficial attributes for the production of
biofuels.

One species that has aroused most interest in
recent years is C. beijerinckii, which not only has the
ability to ferment glucose but also a wide range of
poly and disaccharides, so it can be used in processes
for obtaining the so-called second generation biofuels,
which aim to utilize a wider spectrum of sugar sources
like crop related residues (Ezeji et al., 2007).

The kinetic modeling of fermentation processes
can be used to establish relationships between inputs
and outputs of a system using mathematical tools that
could unveil and predict its behavior under different

operating conditions. They are the first step for the
design and implementation of bioprocesses that aim to
exploit the ability of microorganisms in order to obtain
high quality goods and services (Mayank et al., 2012).

The mathematical modeling of biological systems
can addressed with a structured or unstructured model,
where the first attempt to predict the kinetics of
intracellular reactions as closer as possible, while
the latter considers the system as ”black box”
(Sweere et al., 1988). Although structured modeling
represents the ideal scenario often requires a thorough
understanding of the biochemical mechanisms within
the cell to represent the system with greater certainty,
which usually involves investing a lot of time and
financial resources, so the creation of unstructured
models remains a viable alternative for implementing
biofuel production processes (Grosfils et al., 2007).

However most unstructured kinetic models
have mathematical forms that make no sense
within the biological point of view therefore the
phenomenological development of unstructured
kinetic models aims to find a middle ground between
complexity and practicality to create systems that take
into account as much substrates and products involved
in a metabolic pathway as possible, which in turn
results in better predictive models with a wider range
of applicability to peer systems (Letisse et al., 2003).

As consequence this paper proposes an
unstructured kinetic model from a phenomenological
perspective for the production of butanol by
fermentation by Clostridium beijerinckii, which was
characterized and validated using fitting techniques
and parametric sensitivity with respect to a set of
experimental data and its predictive capacity was
evaluated on a set of different initial conditions.

2 Methodology

2.1 Assumptions

For the generation of the kinetic model state equations
the Clostridium genus ABE metabolic pathway was
assessed from the one reported by (Haus et al., 2011),
which is presented as follows:

It was proceeded to identify the input and output
flows of the same, where were identified the five main
states that make up the structure of the model: glucose,
biomass, butanol, acetone and ethanol, however it is
important to include the formation and consumption
kinetics of intermediaries acetate and butyrate as
Chang (2010) has reported that modulation of those
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Figure 1. Simplified Clostridium genus ABE metabolic pathway reported by Haus (2011). It indicates the principal
routes and enzymes involved on ethanol, acetone and butanol production and its intermediaries.

compounds through metabolic engineering techniques
can potentially increase butanol production.

Shown in Fig. 1 the carbon flow from glucose is
guided in a first stage to acetyl-CoA production which
can be directed to the biosynthetic routes of ethanol,
acetate and butyrate, therefore it was assumed that the
state equations for the ethanol and acetate production
were only dependent on the cellular growth rate and
glucose consumption.

In a second stage it is appreciated that acetone
and butanol concentrations depend on the generation
and supply to the system of acetate and butyrate
respectively, said states need to be modeled
considering them as both substrates and products
wherefore state equations for butanol and acetone
were proposed to be dependent on cell growth and
glucose and acetate or butyrate consumption as the
case may be.

Additionally it was considered that biomass
growth only depended on glucose consumption and
that carbon source represented the limiting substrate,
this due to the anaerobic nature of the microorganism.

Finally, it was known beforehand that the ABE
fermentation process is characterized by presenting
growth inhibition by product accumulation, which
in this particular case is butanol, being reported an
average inhibitory concentration of 14 g/L for this
strain (Lee et al., 2008).

2.2 Model development

With all the above considerations it was proceeded
to generate the following set of differential equations,
which is based on classical mass balance approach,
that comprise the proposed kinetic model:

µX = µmaxX

(
S g

Ksg + S g

)(
1−

But
Kbut

)
(1)

µBut = µmaxBut

(
S g

Ksg + S g

)(
S b

Ksb + S b

)
(2)

µS b = µmaxS b

(
S g

Ksg + S g

)
(3)

µAce = µmaxAce

(
S b

Ksb + S b

)( Act
KsAct + Act

)
(4)
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µEt = µmaxEt

(
S g

Kse + S g

)
(5)

dS g
dt

= −

(
XµX

YX/S g
+

Butµb

YBut/S g
+

AceµAce

YAce/S g
+

EtµEt

YEt/S g

)
(6)

dX
dt

= (µX −Kd)X (7)

dBut
dt

= XµButYBut/X (8)

dS b
dt

= XµS bYS b/X −
XµButYBut/X

YBut/S b
(9)

dAct
dt

= XµXYAct/X (10)

dAce
dt

= XµAceYAce/X (11)

dEt
dt

= XµEtYEt/X (12)

See the notation section for variables description.
Eqs. (1) - (4) represent specific biomass growth

and butanol, butyrate and acetate production rates
respectively. The structure of the growth rate model
obeys a product inhibition one proposed by Levenspiel
(1980), with which it was tried to represent the
influence of high concentrations of butanol in the
system in accordance with those reported by most
existing publications (Lee et al., 2008).

As stated in the assumptions the Eq. (2)
represents butanol production rate based on a dual
substrate kinetics involving glucose and butyrate
concentrations considering the information extracted
from the metabolic pathway, since it has been shown
that adding the latter into the culture medium can
redirect carbon flow into butanol production (Chang,
2010).

To provide the substrate and product dual
characteristic to the model describing butyrate
concentration it was necessary to specify a production
rate for it described by Eq. (3) to use as a positive term
in Eq. (8).

The acetone production process is described in
the pathway as acetate and butyrate concentration
dependent therefore Eq. (4) incorporates the influence
of both in the rate at which it is carried out.

Eqs. (5) - (11) represent the system state equations,
where Eq. (5) describes glucose concentration versus
time and includes terms of substrate consumption from
the major products of fermentation: biomass, ethanol,
butanol and acetone.

Eq. (6) describing the biomass concentration
incorporates Eq. (1) as a term of cell growth and

includes a cell death constant parameter, which is
justified as several authors (Chong, 2010; Lee et al.,
2008) reported a drop in biomass concentration once
the solventogenic phase had started.

Eq (8) which predicts butyrate concentration was
planned in a way it could represent it as both a
substrate to generate butanol and as a fermentation
product in accordance with the metabolic pathway
mentioned above, while Eqs. (7), (9-11) describe
the production trend of butanol, acetate, acetone and
ethanol respectively.

3 Results and discussion

3.1 Parametric identification and
sensitivity

Once built the state equations for the kinetic
model it was proceeded to perform the identification
and parametric adjustment for each of these, the
operation was carried out from a set of experimental
data reported by Chang (2010), considering the
following initial conditions of the corresponding mass
concentrations: 55, 0.2, 2 and 0.5 g L−1 for glucose,
biomass, butyrate and acetate respectively; who
used metabolic engineering tools to increase butanol
production by supplementing the culture medium with
butyrate, this in order to minimize the metabolic flux
shunt towards the production of acetone and ethanol.

ModelMaker ® 3.0.3 software was used to
perform a non-linear parameter adjustment with
the experimental data by the Levenberg-Marquardt
algorithm; the values obtained for each one are
presented in Table 1.

Having identified the set of parameter values that
maximized model fitting into experimental values it
was proceeded to conduct a local sensitivity analysis
based on the application of the Fisher information
matrix (Gunawan et al., 2005), which allows to
quantify the inference degree of each parameter
numerical variation at any simulation time and their
confident intervals into their numerical determination
at different stages of the fermentation.

As expected Fig. 2 shows that the model is
highly sensitive to the precise determination of cell
growth rates, butanol generation, cell death constant
and biomass/substrate yield, this kind of information
could provide a foundation for making adjustments to
analytical or numerical techniques for the calculation
of these parameters in future experiments.

106 www.rmiq.org



Velázquez-Sánchez et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 13, No. 1 (2014) 103-112

Fig. 2. Local parametric sensitivity analysis curves for all the modeled states versus fermentation time: Glucose,
Biomass, Butanol, Butyrate, Acetate, Acetone and Ethanol.
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Table 1. Numerical values for each model parameter
resulted from the non-linear parametric identification.

Parameter Value Units

kaa 9.2254×10−5 g L−1

kba 0.0364 g L−1

KBut 13.3803 g L−1

Kd 0.0040 h−1

KS b 0.0296 g L−1

KS bS g 1.0219 g L−1

KS g 0.9477 g L−1

µmaxAce 0.0004 h−1

µmaxBut 0.0196 h−1

µmaxS b 0.0058 h−1

µmaxX 0.0270 h−1

YAce/S g 0.2597 g/g
YBut/S b 0.0361 g/g
YBut/S g 0.3352 g/g
YEt/S g 0.1005 g/g
YAce/X 0.0053 g/g
YAct/X 0.7493 g/g
YBut/X 0.1130 g/g
YEt/X 2.5189 g/g
YS b/X 0.4887 g/g
YX/S g 0.0249 g/g

3.2 Simulation and bibliographical
comparison

Numerical simulations using the constructed model
were conducted in ModelMaker ® 3.0.3 software.
Figure 3 shows the kinetics simulated by the model,
compared with the one obtained experimentally by
Chang (2010).

To quantify the reliability of the model there was
performed a linear regression analysis for each state
and calculated a global correlation value with respect
to the fit of the model to the experimental data based
on the protocol reported by Tejada (2007). The results
of this study are reflected in Table 2.

As shown in Table 2 parametric adjust yielded
correlation coefficients above 0.95 for most modeled
states, the dynamics of butyrate and acetate could not
be represented with greater accuracy presumably due
to the structure of the differential equation describing
them, since the experimental data exhibit that butyrate
formation during the fermentation conducted by
Chang (2010) is inhibited at the stage of exponential
butanol production and instead the cells incorporate
the butyrate present in the culture medium to carry out
its transformation to alcohol, which can be seen in Fig.
3.

Table 2. Linear regression correlation indexes for
each individual state and global model one versus

Chong (2010) experimental data.

State R2

Glucose 0.9952
Biomass 0.9572
Butanol 0.9802
Butyrate 0.5503
Acetate 0.6614
Acetone 0.9932
Ethanol 0.9677
Global 0.9882

Chang’s (2010) experimental data shows the
culture doesn’t display any ”lag phase” as its growth
rate is almost maxed out since the beginning of the
fermentation; however growth seems to be severely
diminished once butanol concentration increases, as
high solvent values on the bacterial surrounding media
can interfere with its vegetative reproduction cycle.
There is biochemical evidence that suggest Clostridial
strains lack an internal pH regulation mechanism,
therefore their membrane and cell wall dependent
processes become less efficient under these conditions
(Gottwald et al., 1985).

The parametric identification conducted on this
work allowed the proposed model to reproduce
biomass dynamic efficiently, granted by the linear
correlation index obtained on this particular state that
is displayed on Table 2. Levenspiel (1980) structure
for specific growth rate under product inhibition
conditions combined with the implementation of a
death constant ”kd” (refer to Nomenclature) on Eqs.
(1) and (7) respectively proven to be enough to keep
the model performance close to the experimental data.

Also it should be noted that the butanol inhibition
constant value ”Kbut” (refer to Nomenclature) shown
on Table 1, which was obtained by the parametric
identification algorithm proves to be consistent with
the initial assumption of the average inhibitory butanol
concentration for Clostridium beijerinckii reported by
Lee et al. (2008).

Once validated the model’s predictive ability was
assessed for different substrate feed initial conditions,
as this parameter is generally the easiest to manipulate
during experimental essays.

Therefore in an attempt to evaluate the model’s
performance versus a wider substrate concentration
spectrum in silico essays were conducted, this time
the goal was try to reproduce a previously reported
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Fig. 3. Experimental and simulated C. beijerinckii ABE fermentation kinetics. Continuous line represents the
modeled concentrations and crosses indicate experimental values (Chang, 2010).

Fig. 4. Qureshi et al. (2007) experimental data versus proposed model in silico analysis comparison showing
predicted final solvent titers after fermentation of glucose at an initial concentration of A) 60, B) 100, C) 150
g/L and D) 200 g/L respectively.
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Fig. 5. Cheng et al. (2013) experimental data versus proposed model in silico analysis comparison showing predicted
final solvent titers after fermentation of glucose at an initial concentration of A) 30, B) 40 and C) 60 g/L respectively.

experiment by Qureshi et al. (2007) where they use
Clostridium beijerinckii on fermentations with initial
glucose concentrations ranging from 60 to 200 g/L.

As shown in Fig. 4 the proposed model can
simulate final acetone and butanol titers on the
same magnitude order but struggles with the ethanol
one, because as was mentioned earlier at the model
development section ethanol production is altered on
Chong’s (2010) kinetic due metabolic engineering
done to the culture in order to deviate carbon flow from
ethanol synthetic pathway to butanol generation; this
trend is consistent with the one displayed on Fig. 5 as
all the final butanol titers were predicted to be higher
than the ones reported by Qureshi et al. (2007).

Also the final product’s titers were compared
between the ones predicted by the model and
the results obtained by Cheng et al. (2013)
in batch cultures of Clostridium acetobutylicum
so the Clostridium beijerinckii strain theoretical
efficiency could be evaluated under the same operating
conditions.

With the results expressed in Fig. 5 can be
inferred that the Clostridium beijerinckii strains have
theoretical yields superior to those observed on

Clostridium acetobutylicum but within the same order
of magnitude, which can validate the constructed
model and ensure that can be used for in silico studies
of biofuel production generated by the metabolism of
this species.

Conclusion

The biotechnological industry involved on biofuels
production demands finding new strains that enable
the implementation of competitive bioprocesses at the
medium term, so the study of the metabolic pathways
of these organisms should influence the construction
of kinetic models that can predict with a greater
detail degree these mechanisms with the goal of
reducing the margin of uncertainty that is generated by
transferring knowledge of biological area to industrial
applications.

It was demonstrated that the unstructured
phenomenological kinetic modeling approach
presented in this paper could reproduce experimental
data from an ABE fermentation with Clostridium
beijerinckii with a global correlation index over
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0.98, making it suitable for experimentation in
sillico exercises to predict biofuels titers at different
initial conditions, this corroborated by the results
of comparative tests with experiments conducted by
various research groups currently.

Moreover a wide test set was applied to the model
to let know it’s sensitivity degree to the numerical
variation of their parameters, which can be used to
obtain confidence intervals within which the model is
valid and at which points of the analytic techniques
conducted in fermentations of this nature should be
paid more attention, contributing not only within the
theoretical scope but also in the process of designing
experimental strategies with less disruption by mistake
and greater efficiency in resource use.
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Nomenclature
Kaa acetate-acetone affinity constant, g L−1

Kba butyrate-acetone affinity constant, g L−1

Kbut butanol growth inhibition constant, g L−1

kd specific cell death rate, h−1

Ksb butanol-butyrate affinity constant, g L−1

Ksbsg butyrate-glucose affinity constant, g L−1

Ksg glucose affinity constant, g L−1

YAce/S g acetone per glucose mass yield, g/g
YBut/S b butanol per butyrate mass yield, g/g
YEt/S g ethanol per glucose mass yield, g/g
YAce/X acetone per biomass yield, g/g
YAct/X acetate per biomass yield, g/g
YBut/X butanol per biomass yield, g/g
YEt/X ethanol per biomass yield, g/g
YS b/X butyrate per biomass yield, g/g
YX/S g biomass per glucose yield, g/g

Greek symbols
µmaxAce maximum acetate production rate h−1

µmaxBut maximum butanol production rate h−1

µmaxS b maximum butyrate production rate h−1

µmaxX maximum specific cell growth rate h−1
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