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B.A. Escobedo-Trujillo1, F.A. Alaffita-Hernández1, D. Colorado2∗ and J. Siqueiros3

1Facultad de Ingenierı́a, Universidad Veracruzana.Campus Coatzacoalcos, Av. Universidad km 7.5 Col. Santa
Isabel, C.P. 96535, Coatzacoalcos, Veracruz, México
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Abstract
A polynomial model is developed to predict the coefficient of performance of a water purification process
integrated to an absorption heat transformer. The range of the coefficient of performance operations was from
0.21 to 0.39. This model used: inlet temperature in the generator which comes from the absorber, outlet
temperature in the absorber that comes from the generator, inlet temperature in the absorber that comes from
the generator, water-lithium bromide solution inlet concentration in the generator that comes from the absorber
and the pressure in the absorber and generator. A polynomial model is presented in order to obtain coefficient
of performance prediction with a determination coefficient of 0.9919. Level surfaces of the coefficient of
performance against the inlet variables for the polynomial model and residual analysis were presented with
the aim of validating the model. This work has the purpose of providing faster and simpler solutions instead
of the complex equations used for the analysis of the heat transformer in order to obtain accurate coefficient
of performance prediction. The operation variable with the greater contribution of determination coefficient is
presented.

Keywords: lithium bromide solution, residual analysis, Gaussian distribution, water purification.

Resumen
Un modelo polinomial es desarrollado para predecir el coeficiente de desempeño para un sistema de
purificación de agua integrado a un transformador térmico. El rango de operación del coeficiente de desempeño
fue desde 0.21 a 0.39. El modelo usa: temperatura de entrada en el generador el cual proviene del absorbedor,
temperatura de salida en el absorbedor el cual proviene del generador, temperatura de entrada en el absorbedor
el cual proviene del generador, concentración de entrada de la solución de bromuro de litio en el generador
proveniente del absorbedor y la presión en el absorbedor y generador. Un modelo polinomial es presentado con
el objetivo de predecir el coeficiente de desempeño con un coeficiente de determinación de 0.9919. Superficies
de nivel del coeficiente de desempeño contra las variables de entrada del modelo polinomial y el análisis
residual son presentados con el objetivo de validar el modelo. Este trabajo tiene el objetivo de proveer una
solución rápida y simple en lugar de ecuaciones complejas usadas en el análisis del transformador térmico con
el objetivo de obtener apropiadas predicciones del coeficiente de desempeño. La variable de operación con la
mayor contribución en el coeficiente de determinación es presentada.

Palabras clave: solución de bromuro de litio, análisis residual, distribución Gaussiana, purificación de agua.
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1 Introduction

In linear multiple regression analysis, the goal is to
predict, knowing the measurements collected from
the data. In fact, the polynomial fitting is an
attractive technique used for estimating the dependent
variable in a system. The polynomial model has been
used in several fields as: biomedical, environmental,
socioeconomic studies Perez et al. (2009), composite
dynamic envelopes thermal performance forecasting
Lazaros et al. (2013) and electronic applications
Hossain et al. (2011). Castilla et al. (2013) proposed
the use of approximated models with the aim of
reducing the computational cost required to compute
the index, allowing its use in real-time control of
systems and decreasing the size of the network sensor.
The Authors compared an artificial neural network
versus a polynomial model. Although, in general, the
results obtained with the ANN model are better. The
polynomial model can be derived in an easier way.

Absorption heat transformers which operate in
a cycle opposite to that of absorption heat pumps
can be used to reduce the CO2 discharge and to
reuse large amounts of industrial waste heat Horuz
et al. (2009). Physical, theoretical and empirical
models have been satisfactorily tested in order
to model heat transformers and their components.
Sencan et al. (2007) presented a comparison of
different methods for modelling heat transformers
powered by a solar pond. The coefficient of
multiple determination R2 value by: linear regression
(0.26), pace regression (0.76), sequential minimal
optimization (0.77), M5 model tree (0.52), M5’
rules (0.51), decision table (0.25) and neural network
methods (0.99), for the estimation of coefficient of
performance. The comparison and methodology is
based on experimental results by Rivera and Romero
(1998). Siqueiros and Romero (2007) showed that
proposed water purification coupled with a system
absorption heat transformer is capable of increasing
the original value of performance for more than
120% by recycling part of the energy from a water
purification system by thermodynamic simulation.
Hernández et al. (2008) and Hernández et al.
(2009) developed a forecasting model for a water
purification process integrated in an absorption heat
transformer by direct and inverse artificial neural
network with 16 variables in the inlet layer to obtain
on-line prediction of coefficient of performance based
on experimental results by Morales (2005). Sozen
et al. (2007) analyzed the first and second laws
of thermodynamics with the aim of evaluating an

absorption heat transformer coupled to a solar pond
operating with the aqua/ammonia, the maximum
temperature of the useful heat produced was ' 150
oC. Colorado et al. (2009) and (2011) described
a physical-empirical model for a vertical helical
evaporator and condenser under the heat transformer
operation conditions. Juárez et al. (2009) presented a
dynamic model to describe heat and mass transfer of a
horizontal pipe absorber applied to a heat transformer
used to purify water. Rivera et al. (2003) evaluated the
theoretical integration between single and double stage
absorption heat transformer with a distillation column
of butane and pentane, the numerical results showed
that it is possible to reduce the energy consumption in
the re-boiler up to 43% by using a single stage heat
transformer.

A heat transformer experimental rig has been
studied by different authors. Rivera et al. (2011)
applied the first and second law of thermodynamics
to analyze the performance of an experimental heat
transformer used for water purification. Results
showed that decreasing the absorber temperature can
lead to a better performance with low flow ratios
and a greater amount of purified water. Sekar
and Saravanan (2011) described an absorption heat
transformer working with a water-lithium bromide
solution coupled with a seawater distillation system.
A maximum coefficient of performance of 0.38 and
a maximum temperature lift of 20 oC have been
reached under operation conditions, the quality of the
water has been accepted as drinking water according
to the Bureau of Indian Standard. Flores (2013)
proposed a correlation for the heat transfer coefficient
based on energy balance and Wilson plot method with
experimental information of a double tube condenser
under operation conditions of a heat transformer.

Actually, the integration of heat transformers with
industry processes have demonstrated great interest.
Moreover, engineers need more efficient tools to data
processing and integration process assessment. As
to the Author’s knowledge, most of the theoretical
inquiries regarding the absorption heat transformer
modelling were carried out with complex empirical,
semi empirical and thermodynamic assessment with
satisfactory results. The aim of the present work
discusses two main ideas; firstly, present a new
methodology which provides faster and simpler
solutions instead of the complex equations used for
the analysis of the heat transformer in order to
obtain accurate coefficient of performance prediction
with a polynomial model and secondly, to determine
the operation variable with the largest contribution
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to the determination coefficient of prediction. The
polynomial model presented in this work was
compared with an artificial neural network reported in
the literature.

2 Experimental data
Figure 1 shows a schematic diagram of the absorption
heat transformer integrated to a water purification
process. The absorber gives us a useful heat quantity
QAB, produced by the heat transformer from the
evaporator, condenser and generator Siqueiros et al.
(2007).

Experimental database provided by Morales et al.
(2005) consists on different coefficient of performance
values (COP), obtained from a portable water

purification process coupled to an absorption heat
transformer with energy recycling. An experimental
data set was obtained at different initial concentrations
of LiBr in LiBr + H2O mixture, different temperatures
in the absorber, the generator, the evaporator, and the
condenser as well as different pressures in the absorber
and the generator. Transitory and steady states were
taken into account for each initial concentration of
the mixture. After 2 hours from start-up, data was
collected for 4 hours. Experiments were carried out
at eight different initial conditions with at least two
replicates. The arrangement was 8 + 2 with 4 hours
of information acquisition. Thus, a database of 6786
samples was obtained. This data was sufficient for
the polynomial model. A summary of the operating
parameters is shown in Table 1.

Condenser Generator

AbsorberEvaporator

PumpPump
Pump

Inpure 

water

Waste 

heatAuxiliar 

condenser
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Fig. 1. Schematic diagram of absorption heat transformer integrated to water purification process with energy
recycling.

www.rmiq.org 909



Escobedo-Trujillo et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 13, No. 3 (2014) 907-917

Table 1. Range of experimental operating conditions used to obtain the
coefficient of performance values

Temperatures (oC) Operation range Instrumentation label (see Fig. 1)
Tin GE−AB 76.29-91.53 T1
Tin EV−AB 74.56-89.93 T2
Tout AB−GE 84.31-98.27 T3
Tin AB−GE 74.99-92.58 T4
Tout GE−CO 76.29-91.53 T5
Tout GE−AB 77.03-83.89 T6

Tin CO 40.37-65.03 T7
Tout CO 26.77-33.79 T8
Tin EV 28.52-85.33 T9

Tout EV−AB 74.56-89.93 T10
Concentrations (%)

Xin AB 51.66-55.36 X1
Xout AB 50.75-54.36 X2
Xin GE 50.75-54.36 X3
Xout GE 53.16-56.07 X4

Pressure (in Hg absolute)
PAB 7.00-11.50 P1
PGE 19.00-21.10 P2

Thermodynamic properties of the LiBr + H2O
mixture were estimated with Alefeld correlations
cited by Torres-Merino (1997). The inlet and
outlet-temperatures of each component (AB, GE,
CO and EV) were obtained experimentally. At the
same time, the pressure of two components (AB
and GE) was registered with a temperature-pressure
acquisition system (thermocouple conditioner and
Agilent equipment with commercial software). Inlet
and outlet-concentrations in the AB and GE were
established by a refractometer (refraction index). In
this process, LiBr + H2O mixture was used as the
working fluid in the absorber and generator, whereas
only H2O was used in the evaporator and condenser.
A total of 16 variables (10 levels of temperature, 4
of concentration and 2 of pressure) were used and
registered. Only the experimental database of an
absorption heat transformer was used in this study.

2.1 Experimental uncertainty analysis

In the experimental rig, the quantities measured
directly were: mass flow rate, pressure and bulk
temperature. The rotameter, for the working fluid,
had an accuracy of ±3% on the measurement. The
manovacuometer uncertainty was estimated to be less

than 0.5% of full scale, the scale of manovacuometer
is from 0.033 bar to 2.07 bar. The measurements
of thermocouples, T-type copper-constantan, had an
accuracy of ±0.5 oC.

3 Methodology

In this section, the objective is to describe a
methodology to build up a polynomial model that
relates the coefficient of performance with the
previous operation variables (see Table 1).

In general, relationship between the variables of
interest, coefficient of performance and a number of
associated (or inlet) variables T1, . . . ,T10, X1, . . . ,X4,
P1 and P2 which are unknown but can be
approximated by a polynomial model of the form:

COP = p(T1, . . . ,T10,X1, . . . ,X4,P1,P2) + ε, (1)

where p is an unknown polynomial function and ε is
the random error. It is assumed that ε is a random
variable with Gaussian distribution.

To determine the polynomial model described in
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Eq. (1), define the following predictor variable set:

A :={Y1, . . . ,Y16, YiY j, YiY jYk, YiY jYkYn, YiY jYk

YnYm|i = 1, . . . ,16; j = i, . . . ,16;k = j, . . . ,16;
n = k, . . . ,16;m = n, . . . ,16}

where Y1 = T1, . . . ,Y10 = T10, Y11 = X1, . . . ,Y14 = X4,
Y15 = P1 and Y16 = P2. As can be seen, it has
to be checked with all combinations of variables up
to polynomials of degree five, because polynomials
with a degree greater than five only give a benefit of
0.0001 in the determination coefficient (R2), a simple
polynomial is required. The cardinality of set A
equals to 51084,since that there are 16, 136, 2176,
9996 and 38760, terms of the form Yi, YiY j,YiY jYk,
YiY jYkYn, YiY jYkYnYm, respectively. Therefore, there
are 251084 − 1 subsets of A without the empty set.

Linear multiple regression between A subsets and
experimental coefficient of performance (COP) is used
to find the simplest polynomial that fits the data. As
you can notice, in the above paragraph, there are too
many subsets of A, to discard some, the following
criterion is used: if the coefficient of determination
of Yi and Yn

i differed by less than 0.0001 then, Yn
i is

discarded (n = 1,2, . . . ,5). Under this criterion, it is
easy to find the degrees of the monomials associated
to the polynomial model in Eq. (1) (see Table 2.)

Table 2 shows that Y12 and Y13, Y1 and Y5, Y2
and Y10 have the same coefficient of determination,
therefore, it can dispense with one of the two variables.
Therefore the number of combinations that it needs
to test is: 213 − 1 = 8191 (the products YiY j,YiY jYk,
YiY jYkYn, YiY jYkYnYm for i , j , k , n , m were
eliminated due to that provided few benefits to the
coefficient of determination).

Then, the coefficient of determination is calculated
(R2) between each combination of variables and the
coefficient of performance (COP) and the one with the
highest R2 coefficient is chosen.

4 Results

Remember that it seeks the simplest possible
polynomial, therefore those with less variable
polynomials are prefered. After trying many
combinations:

COP ≈ 1.9123× 104 + 0.0247(Tin GE−AB)
−0.0259(Tout AB−GE) + 0.0027(Tin AB−GE)
−12.1769(Xin GE) + 0.1170(Xin GE)2

+1.0797× 103(PAB)− 240.0364(PAB)2

+26.4762(PAB)3 − 1.4490(PAB)4

+0.0315(PAB)5 − 3.0444× 103(PGE)
+148.9803(PGE)2 − 2.4298(PGE)3.

(2)

The fit of the polynomial model in Eq. (2) was
expressed by the determination coefficient R2 which
was found to be 0.9919, indicating that 99.19% of the
variability in the coefficient of performance could be
explained by this polynomial model. Coefficient of
performance can be seen as a linear combination of
factors (see Table 3) plus an independent coefficient
(1.9223×104).

The polynomial (2) is not only the one with the
highest determination coefficient, but also one of the
shortest in terms of variables related.

Size of the confidence intervals (0.0004) (see
Table 3) and coefficient of determination R2 = 0.9919
shows that the monomials T1,T3,T4,X3,X32,P1,
P12,P13,P14,P15,P2,P22,P23 have a linear
relationship with the coefficient of performance (each
treated as distinct and independent terms), to better
appreciate this multivariable linearity see Figure 2.
All the previously mentioned, supports the idea that
the model is indeed valid.

Table 2. Monomials associated to our
polynomial model.

Variable Degree R2

Y1 T1 1 4.2078× 10−6

Y2 T2 1 0.0934
Y3 T3 1 0.0058
Y4 T4 2 0.1977
Y5 T5 1 4.2078× 10−6

Y6 T6 2 0.1714
Y7 T7 1 0.0550
Y8 T8 1 0.0090
Y9 T9 1 0.0096
Y10 T10 1 0.0934
Y11 X1 2 0.3121
Y12 X2 2 0.3139
Y13 X3 2 0.3139
Y14 X4 2 0.1183
Y15 P1 5 0.5488
Y16 P2 3 0.1238
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Table 3. Each coefficient are shown with their corresponding
confidence interval with a confidence level of 99%.

Factor Coefficient Confidence Interval
T1 0.0247 [0.0245, 0.0249]
T3 -0.0259 [-0.0261, -0.0257]
T4 0.0027 [0.0025, 0.0029]
X3 -12.1769 [-12.2857, -12.0680]
X32 0.1170 [0.1159, 0.1180]
P1 1.0797 ×103 [1.0659×103, 1.0936×103]
P12 -240.0364 [-243.1142, -236.9585]
P13 26.4762 [26.1369, 26.8155]
P14 -1.4490 [-1.4676, -1.4304]
P15 0.0315 [0.0311, 0.0319]
P2 -3.0444 ×103 [-3.1268×103, -2.9620×103]
P22 148.9803 [144.9588, 153.0017]
P23 -2.4298 [-2.4952, -2.3644]
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Fig. 2. Experimental versus predicted coefficient of performance for database.

On the other hand, remember that the variables
involved in the polynomial (see Eq. (2)) are: Y1 =

T1,Y3 = T3,Y4 = T4,Y13 = X3,Y15 = P1 and
Y16 = P2, then to give a geometric idea of the
behaviour of the polynomial predictor p, experimental
and predicted coefficients of performance are plotted,
however it is noteworthy that the polynomial has six
different variables therefore, level surfaces are plotted
for each variable, the two-dimensionals and three-
dimensionals are later shown in Figures 3, 4 and 5.
As can be seen, there is good agreement between
predicted values and experimental data points.

4.1 Residual analysis

In this subsection, a residual analysis to verify the
goodness of the polynomial fit in Eq. (2) is presented
by Montgomery (2001) and (2010) and by Devore
(2004).

In section 4, it is supposed that in Eq.(1), ε had
a Gaussian distribution. Under assumption that ε has
a zero mean, the expected value (E) can be taken on
both sides of the equation (1) as follows:
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Fig. 3. Level surfaces. Comparison of experimental and predicted coefficient of performance for each variable
significant in the polynomial model.
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E(COP) =E(p(T1, . . . ,T10,X1, . . . ,X4,P1,P2) + ε)
E(p(T1, . . . ,T10,X1, . . . ,X4,P1,P2)) + E(ε)

COP =p(T1, . . . ,T10,X1, . . . ,X4,P1,P2).

Note that from the last equation, the experimental
coefficient of performance and the polynomial p(·)
would be equal in average. In order to know if ε
has a Gaussian distribution with a zero mean and a
constant variance, In Figure 6 a standardized residuals
histogram by Montgomery (2001) was obtained as can
be seen, the image is bell-shaped except for the three
peaks to the left of the zero indicating that it does not
have a perfect symmetry, to ensure that the residuals
have a zero mean and constant variance. They were
plotted versus coefficient of performance (COP) (see
Figure 7) along with a pair of horizontal lines 3 and
-3. There are points that come out of these lines,
such points are called outliers, in the graph there are
81 outliers, i.e. 98.8% of the standardized residuals
are within -3 to 3. Finally, it is crucial to know
whether these abnormal residues affect the polynomial
significantly, for this reason the 81 outliers were
removed and came back to do the regression without
these points and obtained a determination coefficient
of R2 = 0.9937. The difference is 0.0018, this
result infers that outliers do not represent a significant
amount, so the hypothesis, that the standardized

residuals follow a Gaussian distribution with a zero
mean and constant variance, is accepted.

Finally, to confirm that residues are independent,
figures 7 and 8 are plotted, wherein, in fig. 8 the
confidence intervals (gray lines) standardized for each
residue (points in the middle) and outliers (black lines
at the ends) can be observed. Both images show that
the average of residues is zero (for the distribution to
both sides of the axis x), the variance is constant (in the
form of a gray band at the residues) and the residues
are independent. This ensures the goodness of the
polynomial model in Eq. (2) (see Chapter 4 and 13
from Devore (2004) for details).
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Fig. 6. Histogram of the standarized residuals.
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Fig. 7. Predicted coefficient of performance versus
standarized residuals.
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Fig. 8. Confidence intervals on the residuals with
confidence level of the 95%.

Once the model is validated, it can assured that
there is a linear relationship between the coefficient of
performance and the monomials T1,T3,T4, X3,X32,
P1,P12,P13, P14,P15, P2,P22,P23. For all the
above, there is a polynomial relationship between
the coefficient of performance and the variables
T1,T3,T4, X3,P1 and P2. It is important to note that
these variables are related to the absorption-desorption
process.

On the other hand, the variables that have an
impact on the coefficient of performance in the
polynomial model are T1,T3,T4,X3,P1 and P2.
Table 4 shows the contribution of each term of the
polynomial model on coefficient of determination
R2. The variable with the biggest contribution to the

Table 4. The contribution of each term of the
polynomial model on determination coefficient R2

Factor R2

T1 4.2078× 10−6

T3 0.0058
T4 0.1738
X3 0.1577

X32 0.1604
X3 + X32 0.3139

P1 0.0869
P12 0.0916
P13 0.0948
P14 0.0965
P15 0.0968

P1 + P12 + P13 + P14 + P15 0.5488
P2 7.4473× 10−5

P22 6.2589× 10−5

P23 5.1838× 10−5

P2 + P22 + P23 0.1238

coefficient of determination of the coefficient of
performance predicted is P1 and the contribution is
≈ 0.5488. Another important contribution is X3 with
a ≈ 0.3139. Therefore, the absorber pressure is the
main operation variable from the point of view of the
methodology, followed by the water-lithium bromide
solution inlet concentration in the generator that comes
from the absorber.

The coefficients of the polynomial model were
estimated from the experimental data applying the
method of least squares.

4.2 Comparison between a polynomial
model and an Artificial Neural
Network(ANN) model

The polynomial model has been carefully verified
using, whenever possible, an artificial neural model
reported in the open literature. Figure 9 shows
a further comparison of the developed polynomial
with an artificial neural model by Hernandez
et al. (2009). The comparison is based
on a simulated coefficient of performance versus
experimental results. The determination coefficients
of 0.9919 and 0.9981 were calculated for polynomial
and artificial neural network models respectively.
The greatest discrepancies between polynomial model
and artificial neural network were observed for a
coefficient of performance from 0.2 to 0.26.
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Fig. 9. Approaches to the Coeficient of
Performance by an Artificial Neural Network (ANN)
and multivariable polynomial (Polynomial).

It can be seen that the coefficient of performance
prediction could be calculated with an artificial neural
network or the polynomial methodology discussed in
this work, with great confidence. It’s important to note
that the artificial neural network by Hernandez et al.
(2009) performs COP prediction with 51 coefficients
(weights and bias) and the polynomial model only
with 14 coefficients. Therefore, both models can
be used, at a time, to approximate the coefficient of
performance.

Conclusion

A polynomial model with six inlet operation variables
was successfully developed to predict coefficient of
performance in a water purification process integrated
to a heat transformer. The results obtained with the
fit showed high accuracy with the experimental data
R2 > 0.99. Very high confidence level of the 95% for
each coefficient of the polynomial model was verified.

This methodology can be used to simplify the
complex analysis of the heat transformer with high
confidence. The operation variable with the largest
contribution to the determination coefficient is the
absorber pressure P1. Consequently, greater efforts in
on-line estimation, control pressure developments and
equipment in a heat transformer are recommended.
This methodology can be used in order to predict the
performance of absorption systems. The polynomial
model could be used to assess in the heat transformer
technology integration in other kinds of systems,
for instance, renewable energy systems or chemical
industry.
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Nomenclature
COP coefficient of performance [−]
P pressure [inHg]
Q heat flow [W]
R2 coefficient of determination [−]
T temperature [oC]
X concentration [% w

w ]
E expected value [−]
Greek letters
σ2 standard deviation [−]
Subscript
AB absorber
CO condenser
EV evaporator
GE generator
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